
FACULTY OF ECONOMICS
AND BUSINESS

Dissertation presented to obtain
the degree of Doctor of Philosophy
in Business Economics

by

Morteza DAVARI

Nummer 554 2017

Faculty of Economics and Business
Naamsestraat 69

3000 Leuven
www.feb.kuleuven.be

554

CONTRIBUTIONS TO COMPLEX
PROJECT AND MACHINE SCHEDULING

PROBLEMS

C
O

N
T
R
IB

U
T
IO

N
S
 TO

 C
O

M
PLE

X
 PR

O
JE

C
T
 A

N
D

M

A
C
H

IN
E
 S

C
H

E
D

U
LIN

G
 PR

O
B
LE

M
S

M
orteza D

A
V
A
R
I

FACULTEIT ECONOMIE EN
BEDRIJFSWETENSCHAPPEN

KU Leuven

CONTRIBUTIONS TO COMPLEX PROJECT AND
MACHINE SCHEDULING PROBLEMS

Dissertation presented to obtain
the degree of Doctor of Philosophy
in Business Economics

by

Morteza DAVARI

Number 554 JAN 2017

Doctoral Committee

Advisor: Prof. dr. Erik Demeulemeester
KU Leuven

Members: Prof. dr. Roel Leus
KU Leuven

Prof. dr. Stefan Creemers
KU Leuven and IESEG School of Management

Prof. dr. Mario Vanhoucke
Universiteit Gent

Prof. dr. Christoph Schwindt
Clausthal University of Technology

Daar de proefschriften in de reeks van de Faculteit Economie en
Bedrijfswetenschappen het persoonlijk werk zijn van hun auteurs, zijn alleen

deze laatsten daarvoor verantwoordelijk.

i

Acknowledgments

Undertaking this PhD has been a truly life-changing experience for me
and it would not have been possible without the support and guidance
that I have received from many people.

First and foremost, I wish to express my gratitude to my supervi-
sor, Erik Demeulemeester, whose expertise, understanding and patience
have added considerably to my graduate experience. I greatly appreciate
Erik’s vast knowledge and wisdom (in many areas, specially in the field of
project scheduling) and his continued guidance and support throughout
my doctoral program. In my opinion, Erik is a tremendous mentor: while
he normally had a clear and wise idea how things should be done, he often
pushed me to rely on my own creativity to seek the right approach and
whenever I thought I had reached a dead end, he wisely guided me to
find a way out. I truly appreciate all those countless very long technical
and sometimes personal discussions Erik and I have had during the past
four years. I have to admit that it is still a mystery to me how Erik man-
ages his time such that whenever I asked “do you have time for a (short)
meeting?” he simply answered “sure, come in”. I would like to thank Erik
for trusting me and giving me this amazing opportunity to pursue a PhD
under his supervision. It has been a pleasure to work with him and I
would certainly like to continue our collaboration.

I would like to express my sincere thanks to Roel Leus, who is an inter-
nal member of my Doctoral Committee. My history with Roel goes back
to when I was living and studying in Iran, at which time we collaborated
on a parallel machine scheduling problem. Thanks to this collaboration,
I decided to travel to this beautiful and calm country to continue my
graduate studies. Since the very first days that I arrived to Leuven, he
has offered me direction and technical and personal support, and became
more of a mentor and friend rather than a professor, which has been
highly valuable for me. Moreover, in the course of my PhD, Roel and I

iii

have had very constructive discussions that greatly improved the quality
of this dissertation. He has greatly contributed to some chapters of this
dissertation and is a co-author of some of my publications. I thank him
for the trust, the insightful discussions and the valuable advice he has
provided during my stay in Leuven.

I am also indebted to the other internal member of my Doctoral Com-
mittee, Stefan Creemers, whose support has been greatly valuable. Apart
from providing me with numerous remarks and many novel ideas, Ste-
fan was also a huge source of motivation and energy during the last two
years, which I truly appreciate. I would also like to extend my thanks
to the external members of my Doctoral Committee, Mario Vanhoucke
and Christoph Schwindt. They read each chapter of this dissertation
thoroughly and provided me with detailed constructive comments that
considerably improved the correctness and the quality of this disserta-
tion. Mario questioned my research more from practical and managerial
points of view whereas Christoph looked at my research more from a
mathematical angle.

A very special thanks goes to my former promoter and teacher and
my current friend, Mohammad Ranjbar, without whose motivation and
encouragement I would not have considered to pursue a graduate career
in Operations Research. Mohammad is one of the few people who have
truly made a difference in my academic life. It was through his persistence,
understanding and kindness that I completed my undergraduate degree
and was encouraged to apply for graduate education abroad.

There are a number of people who were (in)directly involved in my
dissertation. I would like to thank Fabrice Talla Nobibon, who collabo-
rated in some chapters of this dissertation and was a great mentor, Jeroen
Beliën, who supported me during the hardships and made me realize that
nothing is impossible, and Patricio Lamas, with whom I shared research
ideas and with whom I had many theoretical and technical discussions.

I have been privileged to have had the opportunity to work in a won-
derful atmosphere created by wonderful colleagues. I would like to express
my deep gratitude to all my colleagues and friends in the 4th and 5th floor
who made this journey incredibly special. I thank them all for those inter-
esting, funny and sometimes philosophical discussions we have had during
the lunch and coffee breaks, and for those extra-curricular activities and
events we participated in together: the soccer training sessions and soccer
tournaments, the volleyball games, the bowling competitions, the team
building activities, the housewarming parties and barbecues, the sponta-
neous travels to Pizzeria Mangia & Via, the occasional running trips, the

iv

amazing board games, etc. My thanks go to all my colleagues: Alexan-
der, Ali, Amir, Ann, Annette, Bart S., Bart V., Ben, Brecht, Bo, Carla,
Catherine, Celien, Daniel, Dennis, Dries, Eugen, Fan, Gert, Guopeng,
Guoxuan, Hamed, Ines, Inneke, Jianjiang, Joeri, Joren G., Joren M.,
Jorne, Kris, Luca, Maud, Mieke, Michael, Narges, Nico, Nishant, Philip,
Pieter, Raisa, Robert, Roel V., Rosita, Ruben, Salim, Saeed, Sarah, Se-
bastian, Stef, Thomas, Tim, Valeria, Vikram, Ward, Xuejun, Yannick
and Zhiqiang, and my special thanks go to those who became really good
friends.

Additionally, I am really grateful for having so many Iranian friends in
Leuven, and I really appreciate all the support I have received from them.
My special thanks go to Ali, Amir Hossein, Mohammadreza, Reza, Salim
and their wives/girlfriends for their continued support and all those game
nights, parties and barbecues we have had during the last four years.

I would like to express again and again my eternal gratitude to my
family, specially my parents. Without their support and guidance, I would
not have become the person that I am today. A distance of six thousands
kilometers does not mean much to them: they always worry about me,
care about me, love me, encourage me and motivate me every single day,
even if they can only be with me once a year.

Finally, my deepest appreciations go to my wife, Zinat, without whose
love I could not have lived, let alone finished this dissertation. I cannot
imagine how could I have brought this PhD-journey to a good end if she
was not always there to calm me when I was frustrated, if she was not
always there to motivate me when I was disappointed and if she was not
always there to erase all those sad thoughts with her smile. I thank her for
joining me in Leuven and all the other countless sacrifices she has made
during past years.

Morteza Davari
Leuven, 23 January 2017

v

Abstract

Scheduling problems are, generally speaking, the problems of allocating
scarce resources over time to perform a given set of jobs (activities). Due
to its practical relevance, the field of scheduling has been one of the most
studied fields since the early days of Management Science and Operation
Research. Within the field of scheduling, many sub-fields have been stud-
ied during the last century, among which project scheduling and single
machine scheduling have received special attention. In this dissertation,
we mainly contribute in these two mentioned sub-fields. As such, this
dissertation includes two parts: the first part includes contributions to
complex project scheduling problems and the second part includes contri-
butions to a single machine scheduling problem.

In the first part, we contribute (i) by introducing an integrated proac-
tive and reactive resource-constrained project scheduling problem and by
proposing several models that can solve the introduced problem, (ii) by
presenting two very important classes of reactions and by investigating
their relevance in optimal proactive and reactive policies and (iii) by
developing a novel branch-and-bound algorithm that solves instances of
chance-constrained resource-constrained project scheduling problem.

In the second part, we contribute (i) by introducing a generic single
machine scheduling problem where the objective is to minimize the total
weighted tardiness penalty and solutions are subject to both time-window
constraints and precedence constraints, (ii) by proposing several lower
bounding schemes for the introduced problem and by investigating the
theoretical relevance and the complexities of the proposed lower bounds
and (iii) by presenting two branching schemes and a number of dominance
rules that combined construct two branch-and-bound algorithms that can
solve instances of the introduced problem.

vii

Contents

Doctoral Committee i

Acknowledgments iii

Abstract vii

Table of contents ix

I Complex project scheduling problems 1

1 Introduction and literature review 3
1.1 The deterministic RCPSP 6
1.2 RCPSP under uncertainty 9

1.2.1 Dynamic project scheduling 10
1.2.2 Proactive/reactive project scheduling 13

1.3 Proactive scheduling . 16
1.3.1 Uncertainty in activity durations 16
1.3.2 Uncertainty in resource availability 20

1.4 Reactive scheduling . 21
1.4.1 Reactive RCPSP with activity duration uncertainty 21
1.4.2 Reactive RCPSP with resource uncertainty 24
1.4.3 Other notable reactive approaches in project schedul-

ing . 25

2 The proactive and reactive resource-constrained project
scheduling problem 27
2.1 Definition and problem statement 29

2.1.1 Solution representation 29
2.1.2 Conceptual formulation 32

ix

Contents

2.1.3 Example project 33
2.2 Solution methodology . 39

2.2.1 Model 1 . 39
2.2.2 Model 2 . 48
2.2.3 Model 3 . 52
2.2.4 Model 4 . 59

2.3 Computational results . 61
2.3.1 Instance generation 61
2.3.2 Measures of stability and robustness 61
2.3.3 Results for our proposed models 62
2.3.4 Comparison with a conventional proactive and re-

active method . 67
2.4 Discussion . 70

2.4.1 Non-conflict-based PR-policies 70
2.4.2 A possible tight lower bound 72

2.5 Summary and future research 73

3 The proactive and reactive resource-constrained project
scheduling problem: The crucial role of buffer-based re-
actions 75
3.1 Two important classes of reactions 76

3.1.1 Sufficient selection 76
3.1.2 Selection-based reactions 79
3.1.3 Buffer-based reactions 81
3.1.4 An implicit enumeration algorithm 85
3.1.5 Computational results 91
3.1.6 Discussion . 96

3.2 The selection of schedules 98
3.2.1 A schedule refinement technique 98
3.2.2 An alternative initial pool generation scheme . . . 99
3.2.3 The computational performance 100
3.2.4 The choice of parameters 102

3.3 Summary and conclusion 105

4 A novel branch and bound algorithm for the chance-constrained
resource-constrained project scheduling problem 107
4.1 Problem description . 108

4.1.1 A realization-based reformulation 110
4.1.2 A sample average approximation 111

4.2 A mathematical formulation 112

x

CONTENTS

4.2.1 A stronger formulation 114

4.2.2 An example . 115

4.3 Branch-and-bound . 116

4.3.1 Constructing the tree 116

4.3.2 Improvements by hashing and listing 125

4.4 Computational results . 127

4.4.1 Instance generation 127

4.4.2 Overall results . 128

4.4.3 Detailed results . 130

4.4.4 Comparison with other methods 135

4.5 Discussion: general CCP problem 136

4.6 Summary and conclusion 137

II A generic single machine scheduling problem 139

5 Introducing GSMSP: a single-machine scheduling problem
with time windows and precedence constraints 141

5.1 Literature review . 142

5.2 Problem description . 143

5.3 Mathematical formulations 145

5.3.1 Assignment formulation 145

5.3.2 Time-indexed formulation 148

5.4 Instance generation . 149

5.5 Computational results . 150

5.6 Summary and conclusion 151

6 Lower bounds for GSMSP 153

6.1 Another conceptual formulation 154

6.2 A trivial lower bound . 155

6.3 Lagrangian-relaxation-based bounds 156

6.3.1 Retrieving precedence constraints 156

6.3.2 Multiplier adjustment 158

6.3.3 Finding a VSP graph 160

6.3.4 Improvement by slack variables 166

6.3.5 Other Lagrangian bounds 167

6.4 The quality of the lower bounds 168

6.5 Summary and conclusion 170

xi

7 A branch and bound algorithm for GSMSP 171
7.1 Branching strategies . 171

7.1.1 Branching strategy 1 173
7.1.2 Branching strategy 2 174

7.2 Dominance properties . 175
7.2.1 General dominance rules 176
7.2.2 Dominance rule based on two-job interchange . . . 178
7.2.3 Dominance rule based on job insertion 185
7.2.4 Dominance rules on scheduled jobs 188

7.3 Initial upper bound . 190
7.4 Computational results . 193

7.4.1 Dominance rules 194
7.4.2 Branch-and-bound algorithms 196
7.4.3 Experiments for subproblems of P 199

7.5 Summary and conclusion 201

List of Figures 203

List of Tables 205

Bibliography 209

Doctoral Dissertations from the Faculty of Business and Eco-
nomics 225

Part I

Complex project
scheduling problems

1

Chapter 1

Introduction and literature review

Every new beginning comes from some other beginning’s end.

- Seneca

Each year, numerous projects go over budget or drag on long after
their planned completion times (Flyvbjerg et al., 2003). To finish a proj-
ect on time and within budget, understanding the factors that influence
the success of the project is indispensable. Pinto and Prescott (1990)
consider the project schedule/plan as one of the ten most critical project
success factors. They also indicate that critical project success factors
often positively correlate with either the quality of the initial planning or
the quality of the tactical operationalization. This practical importance
of the planning in project management has attracted many authors to
study project planning from both managerial and tactical points of view
(Demeulemeester and Herroelen, 2002; Lock, 2007).

In the project management literature, several definitions of the term
project have been provided. Klein (2000) gathered the most common
elements of all these definitions to provide a general definition. In general,
a project can be described as a one-time activity (which consists of a
set of sub-activities) that has to be realized in a certain period of time
using a limited number of resources to fulfill a certain objective (Klein,

3

2000). More specifically, in the project scheduling literature, authors often
simply address the one-time activity as the project and refer to the sub-
activities as activities (Demeulemeester and Herroelen, 2002). Therefore,
in the remainder of this dissertation, similarly to many other papers in
the project scheduling literature, the combination of the terms ‘project’
and ‘activity’ is used.

Project scheduling, as the intersection of scheduling theory and project
management, determines when to start (and/or finish) activities in order
to accomplish a predefined goal. For instance, the resource-constrained
project scheduling problem (RCPSP) determines the start and completion
times of each activity in order to minimize the total project duration
(makespan). In the RCPSP, scheduling takes place while not only prece-
dence constraints but also resource constraints are to be satisfied. To be
completed, each activity requires a certain number of renewable resources
employed for a certain (activity) duration.

The majority of the papers in the literature, both in machine schedul-
ing and in project scheduling, deals with deterministic models. In the de-
terministic RCPSP, we assume that all information is known in advance
and each activity can only be executed in a single way which is deter-
mined by a fixed duration and fixed resource requirements. Deterministic
project scheduling, in particular the deterministic RCPSP, gained much
attention from many authors over the last few decades (Artigues et al.,
2008; Demeulemeester and Herroelen, 2002; Klein, 2000; Neumann et al.,
2003).

In many, if not most, real-life projects, the deterministic RCPSP fails
to generate good schedules in the presence of uncertainty. Assuming ac-
tivity durations and/or resource availabilities to be deterministic is not
realistic for most of the real-life situations. Activity duration uncertainty
and resource availability uncertainty occur because of several reasons such
as: (1) a lack of clear information and precise specification of what is
required, (2) a lack of experience to accurately execute each particular
activity, (3) a large number of influential activity success factors, (4) the
complexity brought by activity interdependencies with other activities, (5)
a limited and inaccurate analysis of the processes involved in the realiza-
tion of an activity and (6) the possible occurrence of particular unexpected
disrupting events or situations that might affect the activity duration or
the resource availability (Chapman and Ward, 2007).

To construct a useful schedule in an uncertain environment, uncer-
tainty should be incorporated into the scheduling problem. Ignoring un-
certainty in scheduling may cost a lot of money and time due to unex-

4

CHAPTER 1. INTRODUCTION

pected schedule disruptions. An online survey by Hillson (2003) indicates
that most of the sources of uncertainty are not unexpected, so they can
be identified, assessed and managed proactively (Herroelen, 2005). In the
literature, there exist two main methodologies dealing with uncertainty in
RCPSP, namely stochastic (dynamic reactive) scheduling (Igelmund and
Radermacher, 1983a,b; Stork, 2001) and proactive and reactive scheduling
(Demeulemeester and Herroelen, 2011; Leus, 2003; Van de Vonder, 2006).

The literature on project scheduling with uncertainty is multidisci-
plinary and as such it can be divided by different solution methodologies
(stochastic, proactive and reactive scheduling), by different types of un-
certainty (activity duration uncertainty and resource uncertainty) or by
different types of objective functions (time-dependent and cost-dependent
objective functions1).

In this chapter, the state of the art with regards to RCPSPs is re-
viewed. We focus on proactive and reactive approaches for the RCPSP
with duration uncertainty and time-dependent objective functions. Be-
sides, we try to briefly review dynamic (completely reactive) approaches
to solve the stochastic RCPSP and give a brief and general overview of
the exact and heuristic approaches to solve the deterministic RCPSP.

In recent decades, several handbooks and book chapters have been
published that focus on the deterministic and stochastic RCPSPs (Ar-
tigues et al., 2008; Demeulemeester and Herroelen, 2002, 2011; Klein,
2000; Neumann et al., 2003; Schwindt and Zimmermann, 2015a,b). Also,
several review papers with different structures and different scopes have
been published (Hartmann and Briskorn, 2010; Herroelen, 2005). Follow-
ing the categorization by Herroelen (2005), we first briefly review the lit-
erature on the deterministic RCPSP (Section 1.1). Next, in the following
sections, we survey RCPSP problems under uncertainty. In Section 1.2,
different variants of the stochastic RCPSP are discussed. Then, proactive
scheduling approaches to solve the non-deterministic RCPSP are surveyed
in Section 1.3. Finally, reactive scheduling methods will be summarized
in Section 1.4.

1There exists a danger of confusion between the term ‘cost-dependent objec-
tive function’ (which refers to a function that is financially of importance, i.e., to-
tal weighted earliness and tardiness cost and the expected total net present value
(De Reyck and Leus, 2008; Deblaere et al., 2011c)) and the term ‘cost function’ (which,
in this review, is considered as an alternative term for the term ‘objective function’
and is not necessarily concerned financially).

5

1.1. The deterministic RCPSP

1.1 The deterministic RCPSP

We define the deterministic RCPSP as an optimization problem and re-
view the best known methodologies to solve this problem. The determinis-
tic RCPSP is known to be NP-hard in the strong sense (Blazewicz et al.,
1983). However, a number of relatively efficient mixed integer (linear)
programming (MIP/MILP) formulations as well as other exact methods,
such as branch-and-bound and branch-and-cut algorithms, have been pre-
sented to solve the problem.

The following data are given for each instance of the deterministic
RCPSP:

• A set N = {0, 1, ..., n+ 1} of activities where activities 0 and n+ 1
are the dummy start and dummy end activities. Each activity has
an integer duration pi ≥ 0, i = 1, . . . , n with p0 = pn+1 = 0.

• A set R of resource types. Each activity i requires rik units of
resource type k ∈ R during its processing time. The resource avail-
ability of resource type k is denoted by Rk.

• A set E of precedence constraints among activities where E ⊆
{(i, j)|i, j ∈ N, i 6= j}. The pair (i, j) ∈ E indicates that activity j
cannot be started before activity i is completed. The transitive clo-
sure of E is denoted by T (E) and its transitive reduction is denoted
by T̄ (E).

A schedule s is a vector of starting times (s0, ..., sn+1) such that si is
the scheduled starting time of activity i. Note that s0 represents the start-
ing time of the project, therefore it equals zero. A conceptual formulation
(RCPSP) can be written as:

(RCPSP) min sn+1

subject to

sj − si ≥ pi ∀(i, j) ∈ T̄ (E) (1.1)∑
i∈Ot

rik ≤ Rk ∀k ∈ R, t = 0, . . . , T (1.2)

si ∈ Z+ ∀i ∈ N (1.3)

where Ot denotes the set of activities in progress at time t and T is an
upper bound for the project makespan (Artigues et al., 2008). In the

6

CHAPTER 1. INTRODUCTION

above formulation, the objective function minimizes the starting time of
the dummy end activity (note that the starting time of the dummy end
activity equals the end of the project). Constraints (1.1) enforce the
precedence constraints among the activities and constraints (1.2) ensure
that all resource availability constraints are satisfied.

Many MIP formulations for the deterministic RCPSP have been pro-
posed. Klein (2000) gathers six different MIP formulations for the de-
terministic RCPSP. The first two formulations (which we refer to as F1
and F2) are the time-indexed formulations proposed by Pritsker et al.
(1969) and Kaplan (1988) (the latter formulation was originally proposed
for the RCPSP where preemption is allowed). The next two formula-
tions are MIP formulations (which we refer to as F3 and F4) proposed
by Klein (2000) where the way of defining variables is taken from the for-
mulations of multi-level lotsizing problems. The last two formulations are
the sequence-based formulation (which we refer to as F5) developed by
Alvarez-Valdes and Tamarit (1993) and the blockwise time-indexed for-
mulation (which we refer to as F6) introduced by Mingozzi et al. (1998).
Klein (2000) tests the first four formulations mentioned above and claims
that F1 and F3 are the most efficient ones (among the first four formu-
lations) in terms of space consumption and speed. Artigues et al. (2008)
presents a number of drawbacks for F5, among which the exponential
number of constraints is the most crucial. Despite all the drawbacks, this
formulation (F5) can become beneficial in finding efficient linear program-
ming (LP) lower bounds (Demassey et al., 2005) and in the construction of
robust schedules (Lamas and Demeulemeester, 2016). Other MIP/MILP
formulations have also been introduced during the last few decades, for
which we refer to Artigues et al. (2003) who propose a resource-flow for-
mulation, Koné et al. (2011) who review many MILP formulations and
propose event-based MILP formulations for the RCPSP and Schwindt and
Zimmermann (2015a, Chapter 2), who present an updated version of the
formulation proposed by Koné et al. (2011).

Plenty of exact algorithms for the RCPSP have been proposed during
the last few decades. Branch-and-bound algorithms (Demeulemeester and
Herroelen, 1992, 1997; Klein, 2000; Mingozzi et al., 1998; Sprecher, 2000)
have been the most successful approaches to optimally solve small and
medium-sized instances. Large-sized instances, however, have remained
unsolved due to the high complexity of the problem and the very large
size of the branch-and-bound tree.

Although many exact algorithms have been proposed to solve the
RCPSP, none of them is efficient enough to solve large size instances.

7

1.1. The deterministic RCPSP

The computational complexity of the RCPSP motivates many authors to
propose heuristic or meta-heuristic approaches to solve the problem. Hart-
mann and Kolisch (2000) provide a classification and performance evalua-
tion of existing heuristic approaches to solve the RCPSP. They introduce
two categories of approaches: X-pass methods and meta-heuristics. In a
more recent publication (Kolisch and Hartmann, 2006), they also investi-
gate recent approaches and methods that do not belong to any category
(other methods) and update the performance results of the recent ap-
proaches.

In the standard RCPSP problem, the objective function is to minimize
the project makespan where preemption is not allowed, resource availabil-
ities are constant through time and there exists no setup cost. The project
manager, however, might be interested in other criteria and/or situations.
Hartmann and Briskorn (2010) provide a complete overview of the most
known variants and extensions of the standard deterministic RCPSP stud-
ied in the literature. They categorize the RCPSPs into five categories. In
the first category, they review papers dealing with different activity con-
cepts (such as preemption, setup times, multiple modes and trade-offs).
In the second category, they survey papers dealing with different tempo-
ral constraints (such as minimal and maximal time lags, release dates and
deadlines). In the third category, Hartmann and Briskorn (2010) review
variants of the RCPSP with different resource types (for example non-
renewable resources, partially renewable resources, cumulative resources,
continuous resources and time varying resource capacities). In the fourth
category, they summarize the literature on the RCPSP with various objec-
tive functions (for example time-based objectives, robustness objectives,
cost-based objectives and multiple objectives) and in the last category,
they list the papers published on multiple project RCPSP problems.

In the following, we provide a practical example for the RCPSP.

Example (A practical example). Consider a software development com-
pany in which the managers intend to develop an analytical software. The
software (which can be defined as a project) consists of eight sub-routines
(activities). Each sub-routine needs a certain number of programmers
(resource requirements) to do the programming within a certain period of
time (activity durations). Eight programmers work for the company (re-
source availability) and we assume that their performances are quite sim-
ilar. Note that some sub-routines are called within other sub-routines and
for debugging reasons, the programmers cannot start coding a sub-routine

8

CHAPTER 1. INTRODUCTION

i

ri1

R1 = 8

2

3

7

3

8

4

1

2

3

4

5

3

4

4

6

2

Figure 1.1: The precedence network for the example project.

before all necessary sub-routines are already properly working (precedence
relations).

To find the earliest possible completion time of the project, we cre-
ate a deterministic RCPSP instance. We consider an instance of eight
non-dummy activities with one resource type of availability eight. The ac-
tivity on node (AoN) representation of this instance is given in Figure 1.1.
Given the deterministic vector of durations p = {0, 2, 7, 4, 4, 8, 6, 4, 2, 0},
an optimal solution s∗ = {0, 0, 2, 4, 0, 7, 7, 9, 13, 15} for the RCPSP in-
stance described above with makespan 15 has been computed by RESCON
software2.

1.2 RCPSP under uncertainty

As already motivated, during the project execution, project activity du-
rations are subject to considerable uncertainty. Although in some cases
uncertainties are negligible and/or avoidable, there still exist many real-
world projects where uncertainties are important and inevitable. Con-
sidering deterministic activity durations is not realistic in such uncertain
situations. Therefore activities together with their uncertain characteris-
tics should be incorporated into the optimization problems. For activities

2RESCON is an educational software for the deterministic resource-constrained
project scheduling problem (http://www.econ.kuleuven.be/rescon/) (Deblaere et al.,
2011a). RESCON, which has been equipped with a version of the exact branch-and-
bound algorithm of Demeulemeester and Herroelen (1992, 1997), can optimally solve
the deterministic RCPSP.

9

http://www.econ.kuleuven.be/rescon/

1.2. RCPSP under uncertainty

with uncertain durations, one possibility is to represent activity durations
by random variables.

The stochastic RCPSP (SRCPSP) is the integration of two well-known
problems, namely the deterministic RCPSP and the stochastic project
network problem. The SRCPSP is a variant of the standard RCPSP where
the durations of the activities are random. The immediate questions are:
“What is a solution?” and “What does the solution look like?” (Stork,
2001).

The SRCPSP is already known for many decades. Several papers have
introduced such scheduling problems. The first mainstream international
English-language publications studying the SRCPSP seem to be those
written by Igelmund and Radermacher (1983a,b), although similar older
researches were described by Kaerkes (1977) and Radermacher (1978).
Within this mainstream, we also cite Möhring et al. (1985a) who provide
an introduction for stochastic scheduling problems especially the SRCPSP
and discuss several stochastic scheduling problems providing many exam-
ples and Möhring et al. (1984, 1985b) who focus more on the analytical
aspects of these problems and provide analytical discussions and proofs.
In the following subsections, we review other mainstream papers studying
the SRCPSP and its related problems.

1.2.1 Dynamic project scheduling

Because durations are represented by random variables, the schedule can
be constructed dynamically over time. This dynamic approach of schedul-
ing is often called completely reactive scheduling.

One of the most attractive objective functions is to find a policy that
minimizes the expected project objective value. A policy can be seen as a
dynamic decision over time that decides which activity is being processed
next according to the information (the realization of the activities that
have been already scheduled and the probability characteristics of the
activities waiting to be scheduled) given at the current time (Stork, 2001).
The project objective is computed by a function that is assumed to be
a regular function (i.e., componentwise non-decreasing in the completion
times of activities), for example the project makespan. We refer to Pinedo
(2008) and Baker (1974) for a more precise definition and examples of
regular (cost) functions.

Different classes of policies have been considered in the literature (Ash-
tiani et al., 2011; Möhring et al., 1984, 1985b; Stork, 2001), some of which
will be briefly addressed in the following, namely the class of priority poli-

10

CHAPTER 1. INTRODUCTION

cies (also called resource-based policies (Ashtiani et al., 2011)), the class
of early start policies, the class of pre-selective policies, the class of linear
pre-selective policies, the class of activity-based policies (also referred to
as job-based policies (Stork, 2001)) and the class of pre-processor policies.
In the following, these classes of policies are discussed in more detail.

Priority policies The class of priority policies originated from the
priority lists (rules). For each decision moment t, a priority policy sched-
ules as many activities as possible (scheduling these activities must be
resource and precedence feasible) based on a given order. Two drawbacks
of this class are as follows: (1) using the policies belonging to this class,
there exist instances for which none of the policies result in an optimal
solution (Stork, 2001) and (2) the members of this class of policies suffer
from Graham anomalies (Graham, 1969). One of the most important ab-
normalities is the possibility of increasing the project duration as a result
of decreasing the duration of one or more activities. As already mentioned
in the literature for many times, the policies belonging to this class are
known to be “neither monotone nor continuous” (Möhring et al., 2000;
Stork, 2000).

Early start policies The class of early start policies was introduced
by Radermacher (1981). The idea is to convert a directed acyclic graph
(dag) G0 = (N,E0) to another dag G1 = (N,E1), E0 ⊂ E1 such that
no minimal forbidden set exists in G1. A set of activities is forbidden if
it is an anti-chain in G0 and the concurrent processing of its members
results in a resource violation. A forbidden set is minimal if none of its
subsets is a forbidden set. The early start policies, which are known to
be continuous, monotonically increasing and also convex (Igelmund and
Radermacher, 1983a; Stork, 2001), have been used several times in the
literature (Artigues et al., 2013; Stork, 2001, 2000). Stork (2000) examines
the early start policies in his branch-and-bound algorithm. Artigues et al.
(2013) studies the maximum (absolute-)regret robust RCPSP where they
try to find an early start policy that minimizes the maximum (absolute)
regret over all scenarios.

Pre-selective policies and linear pre-selective policies The
class of pre-selective policies is a generalization of the class of early start
policies. The only difference is the addition of the waiting activity. Unlike
early-start policies, in pre-selective policies, for each minimal forbidden

11

1.2. RCPSP under uncertainty

set FS, an activity (the waiting activity) is chosen and is delayed until
at least one other activity in FS has been completed. The class of linear
pre-selective policies is a subclass of the class of pre-selective policies. In
linear pre-selective policies, a priority ordering of activities AL is given and
the associated waiting activity for each minimal forbidden set is selected
based on the given list. More specifically, the associated waiting activity
of minimal forbidden set FS is considered to be activity i ∈ FS that suc-
ceeds all activities j ∈ FS \ {i} in AL. The class of pre-selective policies
was introduced and examined by Igelmund and Radermacher (1983a,b).
Stork (2001) follows Igelmund and Radermacher (1983a,b) and examines
several classes of policies among which the class of pre-selective policies
and its subclass, the class of linear pre-selective policies, are of the most
importance. He also proposes a branch-and-bound algorithm to evaluate
the performance of the mentioned classes of policies (Stork, 2000).

Activity-based policies The activity-based policies (or job-based
policies (Stork, 2001)) are based on the same representation as the prior-
ity policies, but use a different procedure to construct the schedules. This
procedure is called a stochastic serial schedule generation scheme (SGS),
which is a mixture of a parallel and a serial SGS. Ballest́ın (2007) de-
ploys three sampling procedures and three genetic algorithms to find an
activity-based policy which minimizes the expected makespan. Activity-
based policies have been used in the GRASP-heuristic algorithm proposed
by Ballest́ın and Leus (2009) and in the artificial bee colony algorithm pro-
posed by Tahooneh and Ziarati (2011) to minimize the expected makespan
for the SRCPSP.

Pre-processor policies The class of pre-processor policies was in-
troduced by Ashtiani et al. (2011). A pre-processor policy is defined by
a set of activity pairs X ⊂ N × N \ T (E), with G(N,E ∪ X) being
acyclic, and an activity list. The pairs in X, that impose extra finish-
to-start precedence constraints, eliminate some of the minimal forbidden
sets whereas the decisions associated with the remaining minimal forbid-
den sets are resolved dynamically during the project execution using the
given activity list. Members of this class, which contain finish-to-start
temporal arcs, combine the unconditional sequencing decisions of early
start policies and the real-time dispatching features of resource-based poli-
cies (Ashtiani et al., 2011). Ashtiani et al. (2011) propose a two-phase
local search procedure for their pre-processor policies. They also provide

12

CHAPTER 1. INTRODUCTION

improvements for early start policies and priority policies. Rostami et al.
(2017) introduces a variant of the class of pre-processor policies whose
members contain both finish-to-start and start-to-start arcs.

1.2.2 Proactive/reactive project scheduling

A very crucial disadvantage of dynamic (completely reactive) project
scheduling is that no baseline schedule is constructed. A number of jus-
tifications for the necessity of a baseline schedule have been discussed
in the literature (Herroelen, 2005): a baseline schedule (1) enables man-
agers to allocate the resources to different activities, (2) provides overall
information to set reliable due dates, (3) serves as a basis for planning
external activities, such as preventive maintenance and order deliveries,
(4) allows the monitoring and control of the project, (5) permits sharing
the resources with other parties and (6) lets the manager arrange time
windows with their subcontractors. For more details of the advantages of
baseline schedules in machine and project scheduling problems we refer
interested readers to Aytug et al. (2005), Demeulemeester and Herroelen
(2011), Leus (2003) and Mehta and Uzsoy (1998).

An alternative solution methodology for solving the RCPSP with un-
certainty is proactive/reactive scheduling which consists of two phases:
proactive scheduling and reactive scheduling. Proactive scheduling is
meant to construct a baseline schedule that is as robust (stable) as possible
against duration uncertainty and/or resource uncertainty. While schedul-
ing proactively, a reactive scheduling procedure may be needed when con-
flicts3 occur. Note that proactive scheduling and reactive scheduling are
not alternatives, but two complementary phases of planning (Chapman
and Ward, 2007).

In proactive/reactive scheduling, the goal is to construct a solution
that is as robust as possible against a certain type of uncertainty. The
measures of robustness can be single or composite. Quality robustness and
solution robustness are two well-known single robustness measures. In
the following, we discuss the quality, solution and composite robustness
measures. Other types of robustness and stability measures also exist in
the literature, for which we refer to Chtourou and Haouari (2008), Mehta
(1999), Sabuncuoglu and Goren (2009), Khemakhem and Chtourou (2013)
and Schwindt (2005, Section 6.5).

3Conflicts are those disruptions that are not absorbed by the protected baseline.

13

1.2. RCPSP under uncertainty

Quality robustness Quality robustness is defined as a concept of
protection against variations in the objective value. The most studied
objective function is the project completion time (makespan). For this
specific objective function, an example quality robustness measure is for-
mulated as follows:

π(sn+1 ≤ project’s due date), (1.4)

where sn+1 denotes the realized starting time of the dummy end activity
and operator π(·) represents the probability4 of occurrence. The objec-
tive for this case is to maximize π(sn+1 ≤ project’s due date) over all
feasible schedules. Other examples of quality robustness measures are the
minimization of the worst case makespan and the minimization of the
maximum regret.

Solution robustness Solution robustness is defined as a concept of
protection against variations in the starting times. Many authors have
considered starting time deviations, which is the weighted sum of the
differences between the realized starting times and the planned starting
times, as their solution robust measure. For instance, Leus and Herroelen
(2004) propose the following function as a measure of solution robustness:∑

i∈N
wiE[|si − si|] (1.5)

where si denotes the realized starting time of activity i, si represents the
planned starting time of activity i and E[·] is the expectation operator.
Notice that E refers to the set of precedence constraints among activities
and must not be confused with the expectation operator. Also, wi denotes
the cost per unit time of the activity starting time deviation. The solution
robust objective can be defined as the minimization of

∑
i∈N wiE[|si − si|]

over all feasible schedules. Other examples of solution robustness mea-
sures are the minimization of the total weighted earliness/tardiness, the
minimization of the total expected square deviations and the minimization
of the total variance of completion times.

Composite robustness Any combination of the above single ro-
bustness measures can be considered a composite measure. Van de Vonder

4All probability operators in this dissertation adhere to the Kolmogorov’s Axioms.

14

CHAPTER 1. INTRODUCTION

Method Type of
uncertainty

Papers

Proactive
Duration
uncertainty

(Abbasi et al., 2006; Al-Fawzan and
Haouari, 2005; Bruni et al., 2011;
Chtourou and Haouari, 2008; Fu
et al., 2012; Herroelen and Leus, 2001,
2004a,b; Klimek and Lebkowski, 2009;
Lamas and Demeulemeester, 2016; Leus
and Herroelen, 2004, 2005; Van de Von-
der et al., 2005, 2006, 2007b, 2008)

Resource
uncertainty

(Lambrechts et al., 2007, 2008a,b, 2011)

Reactive
Duration
uncertainty

(Van de Vonder et al., 2007a,b)

Resource
uncertainty

(Lambrechts et al., 2008a)

Table 1.1: The literature on the proactive and reactive RCPSP.

et al. (2008) introduce a composite measure of robustness as follows:

func(π(sn+1 ≤ project’s due date),
∑
i∈N

wiE[|si − si|]), (1.6)

which is a bi-criteria objective where the first objective, which is the maxi-
mization of π(sn+1 ≤ project’s due date), and the second objective, which
is the minimization of

∑
i∈N wiE[|si − si|], are simultaneously considered

for optimization.

Although a considerable number of papers deal with proactive project
scheduling, the literature on reactive project scheduling remained rather
scarce. Table 1.1 classifies some of the existing literature on the proac-
tive and reactive RCPSP. In Section 1.3 and Section 1.4, we review the
proactive and reactive approaches to solve the RCPSP under uncertainty,

15

1.3. Proactive scheduling

respectively. Our classification is mainly elaborated based on duration
uncertainty and resource availability uncertainty.

1.3 Proactive scheduling

Proactive scheduling, which is also known as predictive scheduling, has
been considered by many authors when confronted with uncertainty in
both machine and project scheduling problems (Aytug et al., 2005; De-
meulemeester and Herroelen, 2011). Many authors have studied proac-
tive (or predictive) approaches in single machine scheduling (for example
Briskorn et al., 2011; Mehta, 1999), in parallel machine scheduling (for
example Duenas and Petrovic, 2008), in job shop scheduling (for example
Mehta and Uzsoy, 1998) and in resource-constrained project scheduling
(for example Demeulemeester and Herroelen, 2011; Herroelen and Leus,
2004a,b; Leus and Herroelen, 2004).

Among all existing types of uncertainty, two types of uncertainty,
namely duration uncertainty and resource availability uncertainty, have
been focused on the most in the literature. In the following sections, we
review the literature on each of these two types of uncertainty.

1.3.1 Uncertainty in activity durations

A vast number of papers in the literature, in both machine and project
scheduling, are devoted to duration uncertainty. Duration uncertainty
in project scheduling refers to the situation where the durations of the
activities, for whatever reasons, are subject to uncertainty, which means
that activities can last longer or shorter than what is planned.

A pioneer proactive scheduling method is the critical chain scheduling
and buffer management (CC/BM) method which has been constructed
based on the principles described by Goldratt (1997). By adding several
types of buffers, namely feeding buffers5, resource buffers6 and project

5A feeding buffer is the safety time added when a non-critical chain activity joins a
critical chain.

6Resource buffers are added to some activities on the critical chain to ensure the
availability of the project resources. More precisely, a resource buffer is added to the
end of an activity when its successor in the critical chain needs a renewable resource
that is not used by the previous activity or needs more of at least one resource type
than the preceding activity. This type of buffer has gained less attention from authors.
Thus resource buffers are not discussed further in this review.

16

CHAPTER 1. INTRODUCTION

buffers7, to the project (Goldratt, 1997), CC/BM creates proactive sched-
ules to tackle uncertainty. In this context, many papers (for instance
Herroelen and Leus, 2001; Herroelen et al., 2002; Van de Vonder et al.,
2005) have been written to discuss the advantages and disadvantages of
CC/BM.

The first footsteps of the research on solution proactivity in the RCPSP
have been taken by Leus (2003). Leus and Herroelen (2005) show that
scheduling with a single disruption and in the presence of precedence
constraints is strongly NP-hard even for a single machine environment.
Herroelen and Leus (2004a) propose exact methods (MIP formulation)
to construct solution robust baseline schedules for the case in which only
one disruption occurs. They also propose a number of heuristic procedures
to obtain solution robust schedules, among which the activity-dependent
float factor (ADFF) model is of most importance. They assume that
the railway scheduling policy8 is adopted, where the activities are not
started earlier than their planned starting times even if the corresponding
resource and precedence constraints are met. They additionally study
how to allocate resources such that the protection of a given schedule
against possible duration variability is maximized (Leus and Herroelen,
2004). They also present a resource allocation model that increases the
stability of a given schedule.

Van de Vonder et al. (2005) seeks to understand the trade-off between
quality and solution robustness. They run a number of simulations to com-
pare the CC/BM approach, which provides quality robust schedules, with
the ADFF model developed by Herroelen and Leus (2004a), which pro-
vides stable schedules. Both approaches add safety time (buffers) to the
project in order to protect against unexpected duration variability. De-
spite similar protection methods (adding safety time), the two approaches
have major differences and produce different schedules. The main differ-
ences between these two approaches are the way they distribute the safety
time in the project and the type of robustness they provide. The CC/BM
approach adds only project and feeding buffers whereas the ADFF model
distributes the buffers throughout the project schedule. The former ap-

7A project buffer is the safety time added at the end of a project schedule to protect
against aggressive duration estimates.

8The railway scheduling policy which is named by Van de Vonder et al. (2005) is
one of the two best known execution scheduling policies. The alternative execution
scheduling policy is called roadrunner scheduling policy where activities are started as
soon as possible after the completion of all their predecessors provided that enough
resources are available (Goldratt, 1997).

17

1.3. Proactive scheduling

proach denies the importance of the intermediate milestones, follows the
roadrunner mentality and therefore only tends to maintain the quality
robustness of the schedule, whereas the latter one follows the railway
scheduling approach and therefore aims at stability and solution robust-
ness. Van de Vonder et al. (2005) conclude that the ADFF model not
only constructs solution robust schedules, but also provides reasonable
quality robustness while the CC/BM approach fails in providing solution
robustness.

Several improved heuristic approaches have been studied in the liter-
ature (Van de Vonder et al., 2006, 2008). Van de Vonder et al. (2006)
propose a resource flow-dependent float factor (RFDFF) heuristic to con-
struct solution robust schedules. In fact, RFDFF is a modified version
of ADFF, in which the resource flow is employed to avoid resource in-
feasibility. They set up a thorough analysis to investigate the impact
of certain parameters (number of activities, weighting parameter, order
strength (Demeulemeester et al., 2003), etc.) on the solution and quality
robustness of the resulting schedule. In line with the research done by Van
de Vonder et al. (2006), Van de Vonder et al. (2008) develop new heuristic
procedures, among which the virtual activity duration extension (VADE)
and the starting time criticality (STC) heuristics are the most efficient,
and compare their performances with those already provided in the liter-
ature. According to their comparison, STC is ranked best in terms of the
average computational speed of the procedure and the average solution
robustness of the generated schedules.

Recently, robust methodologies have been provided by using chance-
constrained programming (Birge and Louveaux, 2011). Bruni et al. (2011)
employ a joint chance constraint to ensure a certain level of robustness
in their proactive schedule. Their robust schedule consists of a vector
of starting times and a vector of completion times. They use a stochas-
tic dynamic generation scheme (SDGS) that heuristically determines the
starting times based on the completion times of the predecessors and the
resource availability. In SDGS a chance-constrained programming prob-
lem is iteratively solved to compute the completion times. Lamas and
Demeulemeester (2016) introduce the chance-constrained RCPSP (CC-
RCPSP) which is the chance-constrained version of F5, the sequence-
based RCPSP formulation introduced by Alvarez-Valdes and Tamarit
(1993). Lamas and Demeulemeester (2016) recognize three difficulties
to solve their proposed CC-RCPSP: (1) the feasible region is not convex,
(2) even a feasibility check for the joint chance constraint is difficult and
(3) the number of minimal forbidden sets in F5 is exponential in the num-

18

CHAPTER 1. INTRODUCTION

ber of activities. They tackle the first two difficulties by sample average
approximation and the third difficulty by a branch-and-cut algorithm.

Zheng et al. (2013) study a solution robust method for the resource-
constrained multi-project scheduling problem. They propose a bi-criteria
model consisting of two objectives: (1) maximizing a measure of solution
robustness tailored for a multi-project environment and the minimization
of the total makespan, and they develop an algorithm based on the multi-
objective genetic algorithm known as NSGA-II.

Deblaere et al. (2011c) try to combine the notions of a proactive sched-
ule and an execution policy (which maps a vector of activity durations to a
vector of resource and precedence feasible starting times). They compute
an optimal baseline schedule for every given execution policy. For every
combination of a policy and a baseline schedule, a cost value is computed
that is equivalent with the expected total weighted earliness and tardi-
ness. Their objective is to minimize the total cost by choosing the best
execution policy. Deblaere et al. (2011c) propose two heuristic algorithms,
one initializes an execution policy and the other iteratively improves the
quality of the initial policy in terms of its associated objective cost.

There are some research on the bi-criterion RCPSPs under uncertainty
that seem to be interesting and related. Many heuristics have been pro-
posed to solve the bi-criterion RCPSP under uncertainty. The most com-
mon bi-criterion objective function is the combination of the minimization
of the makespan and the optimization of a predictive robustness measure.
Examples are reviewed in the following. Al-Fawzan and Haouari (2005)
propose a tabu search algorithm for the bi-criterion RCPSP. Their ro-
bustness measure is the total sum of the free slacks9. Abbasi et al. (2006)
define another bi-criterion objective function, which is a linear function
of the makespan and the total free slack, and solve it by a simulated an-
nealing algorithm. Chtourou and Haouari (2008) define twelve different
robustness measures and propose a two-stage robust schedule generation
approach to solve the bi-criterion RCPSP.

Other related topics and approaches that have been studied during
the last decade are reviewed in this paragraph. Klimek and Lebkowski
(2009) study the robust buffer allocation for the RCPSP with predefined
milestones. They introduce a buffer allocation algorithm that inserts unit
buffers such that the robustness measure is maximized. Fu et al. (2012)
study the RCPSP with minimum and maximum time lags and activity

9In Al-Fawzan and Haouari (2005), the free slack of activity i is the amount of time
that activity i can slip without delaying the very next activity and while maintaining
resource feasibility.

19

1.3. Proactive scheduling

duration uncertainty (SRCPSP/max). They propose a local search algo-
rithm to obtain a reasonably robust schedule for the SRCPSP/max.

1.3.2 Uncertainty in resource availability

Although most of the research on the RCPSP under uncertainty focuses on
the activity duration uncertainty, resource availability uncertainty in the
RCPSP has also gained much attention during the last decade. Resource
availability uncertainty in project scheduling refers to the situation in
which the resource availabilities are subject to uncertainties, which can
be caused by resource failures or breakdowns.

There exist not much research on project scheduling with resource
availability uncertainty. To the best of our knowledge, Lambrechts et al.
(2007, 2008a,b, 2011) are the only authors who published on this topic.
Lambrechts et al. (2008a) state that robust schedules can be constructed
by inserting any combination of two types of buffers, namely time buffers
and resource buffers, into any given initial schedule. They propose two
approaches to construct the initial schedule and a number of heuristic
algorithms to insert the resource and time buffers. They also provide
three reactive approaches to respond to possible conflicts. In Lambrechts
et al. (2008a) the objective function is the weighted sum of the starting
time deviations.

In a parallel research, Lambrechts et al. (2008b) propose a tabu search
procedure as a predictive/reactive project scheduling approach, in which
they examine a free-slack based objective function to evaluate the perfor-
mance. Although this tabu search cannot outperform the best approaches
in Lambrechts et al. (2008a), one should not neglect the advantage of us-
ing the free-slack objective function: unlike the evaluation of the objective
function in Lambrechts et al. (2008a), which is done by simulation, the
free-slack objective function is computed in polynomial time. Lambrechts
et al. (2011) also state that “time buffering based on simulation performs
far better than surrogate objective functions, but the reader should keep
the higher computational demands in mind”. They propose time buffer-
ing procedures to construct robust schedules for the RCPSP with resource
availability uncertainty. They introduce three surrogate measures of ro-
bustness and compare them with simulation-based time buffering and the
STC procedure.

20

CHAPTER 1. INTRODUCTION

1.4 Reactive scheduling

As we already discussed in Section 1.3, proactive scheduling constructs a
schedule that is protected against disruptions. When disruptions occur,
this protection prevents the schedule from precedence and resource vio-
lations. However, it is still possible that the protection fails to absorb
the disruption and therefore the schedule becomes infeasible or disturbed.
Such disruptions are called conflicts. In such cases, a rescheduling ap-
proach, which is also known as reactive scheduling, may be used to make
the schedule feasible or improve the schedule’s robustness.

In reactive scheduling, providing a schedule that does not deviate much
from the baseline schedule should be considered as one of the most im-
portant objectives. It is not always desirable, both from managerial and
from planning points of view, that the rescheduled starting times of the
activities differ a lot from the planned starting times of these activities.
In a project with medium or high levels of uncertainty, because of high
chances of disruptions, the planned starting times may inevitably differ to
a large extent from the rescheduled starting times. In such cases, many
important decisions such as the ones regarding personnel/resource sched-
ule and delivery of raw materials need to be retaken, which often costs a
lot.

As we already mentioned, the literature on reactive project scheduling
is scarce. Being scarce, it has only been reviewed by Herroelen (2007)
and Demeulemeester and Herroelen (2011). We classify the reactive proj-
ect scheduling literature into two categories: reactive approaches for the
RCPSP with activity duration uncertainty and reactive approaches for
the RCPSP with resource availability uncertainty. In the following sub-
sections, we review the few existing reactive approaches for the RCPSP
with activity duration uncertainty and resource availability uncertainty.

1.4.1 Reactive RCPSP with activity duration uncer-
tainty

Van de Vonder et al. (2007b) provide a classification of proactive and reac-
tive procedures for the RCPSP with duration uncertainty. They propose
four different reactive scheduling methods, namely complete rescheduling,
an early-start policy after fixing resource flows, activity-based priority
rules and minimizing earliness and tardiness costs. In the following, we
discuss these four methods in more detail.

21

1.4. Reactive scheduling

The first proposed reactive scheduling method is complete reschedul-
ing. In complete rescheduling, Van de Vonder et al. (2007b) use the same
procedure as used for constructing the baseline schedule with the only
difference that the already scheduled activities are eliminated from the
problem. There are two main drawbacks of this method: (1) the proce-
dure requires high computational efforts and (2) the projected schedule10

may deviate a lot from the baseline schedule.

The second proposed reactive scheduling method is to apply an early-
start policy while maintaining the resource flow. As maintaining the re-
source flow from the baseline schedule certainly reduces the flexibility of
the rescheduling procedure, it results in much faster computations and
more robust schedules.

The third proposed reactive scheduling method relies on activity-based
priority rules. The idea is to use a schedule generation scheme (SGS) to
obtain a projected schedule from a priority list. Van de Vonder et al.
(2007b) consider the earliest baseline activity starting time (EBST) as the
priority list and the SGS procedure by Stork (2001). When a conflict
occurs, the unrealized activities are started as soon as possible after the
current time (current decision point).

The last reactive scheduling method proposed by Van de Vonder et al.
(2007b) is to solve the resource-constrained weighted earliness tardiness
project scheduling problem (RCPSPWET). The due dates in the RCP-
SPWET are set to the starting times of the activities in the baseline
schedule and the earliness and tardiness penalties are set to provide the
stability of the outcome schedule. To solve the RCPSPWET, they use a
customized version of the exact procedure proposed by Vanhoucke et al.
(2001). Although the procedure is computationally expensive, the results
show that it reasonably preserves the stability. However, the makespan
deviation might become large since the project may be delayed due to
another conflict which occurs later during the project scheduling.

Van de Vonder et al. (2007a) propose three advanced heuristic reac-
tive scheduling procedures, namely basic sampling, time-window sampling
and a heuristic weighted earliness tardiness (WET) procedure. Their ob-
jective is to find a projected schedule with the smallest total weighted
deviation from the baseline schedule. In the following, we discuss these
three procedures in more detail.

10The projected schedule is the schedule that results when reactive scheduling is
applied.

22

CHAPTER 1. INTRODUCTION

Sampling approach In the basic sampling approach, at each decision
point t, 28 different schedules sl,k are constructed by using four schedule
generation schemes (k = 1, ..., 4) and seven priority lists (l = 1, ..., 7), the
best schedule st with the smallest deviation from the predictive schedule
is selected and all the activities with sti = t in st are set to start at time t.
They use EBST, LST (latest starting time), LW (largest activity weight),
LAN (lowest activity number) and RND (random) as static priority lists
and EPST (earliest projected starting time) and MC (minimal cost) as
dynamic priority lists. The four schedule generation schemes are the ro-
bust parallel SGS, the robust serial SGS, the parallel SGS and the serial
SGS (Van de Vonder et al., 2007a).

Time-window sampling approach A drawback of the basic sampling
approach is that the selection of a projected schedule depends on the start-
ing times of all unscheduled activities including those that will start very
late after the current time t. To overcome this drawback, they intro-
duce the time-window sampling approach. In the time-window sampling
approach the SGSs only define the starting times of the activities that
start within a time-window [t, t+ ∆]. Van de Vonder et al. (2007a) show
that the time-window sampling approach constructs more stable schedules
than those constructed by the basic sampling approach11, although it is
computationally a bit more expensive than the basic sampling approach.

Heuristic WET procedure Van de Vonder et al. (2007a) also pro-
pose a heuristic weighted earliness and tardiness approach to construct
schedules with high stability. In fact, in each decision point t the reac-
tive scheduling step can be seen as a RCPSPWET. Van de Vonder et al.
(2007a) argue that the existing exact approaches (Kéri and Kis, 2006;
Vanhoucke et al., 2001) to solve the RCPSPWET are too slow for their
purpose, so they use an adopted version of the population-based iterated
local search algorithm proposed by Ballest́ın and Trautmann (2008). Van
de Vonder et al. (2007a) depict that this heuristic approach constructs
more robust solutions than those constructed by the basic or time-window
sampling approaches. However, the heuristic WET procedure turns out
to be much more time consuming than the two mentioned alternatives.

11Note that the robustness measure for this comparison is the total weighted starting
times deviation from the baseline schedule. The result of a comparison with another
robustness measure may be different.

23

1.4. Reactive scheduling

1.4.2 Reactive RCPSP with resource uncertainty

To the best of our knowledge, there exists only one paper dealing with
reactive scheduling procedures for the RCPSP with resource availability
uncertainty (Lambrechts et al., 2008a). Lambrechts et al. (2008a) pro-
pose two different reactive approaches to deal with resource conflicts: list
scheduling and a tabu search based heuristic.

List scheduling List scheduling is the first reactive scheduling approach
proposed by Lambrechts et al. (2008a). The idea is to regenerate the
schedule using an SGS and a priority list L. Lambrechts et al. (2008a)
develop a modified version of the serial SGS (MS-SGS). At the time of dis-
ruption, the activities in progress are either rescheduled or left unchanged.
The MS-SGS first tries to maintain the baseline starting times for these
activities. If maintaining starting times is not possible, MS-SGS restarts
these activities and reschedules them, together with other unprocessed
activities, as soon as possible based on the given priority list. Two types
of priority list are tested: a random priority list and a scheduled order list.
The random priority list is a random list of activities and does not use any
information from the baseline schedule. On the contrary, the scheduled
order list is generated from the baseline schedule and provides stability.
Lambrechts et al. (2008a) consider the result of the random priority list
as a benchmark. The average stability provided by using the scheduled
order list is far better than that provided by using the random priority
list.

Tabu search improvement approach The solutions obtained by ap-
plying list scheduling can be improved using a tabu search improvement
algorithm. In this algorithm, a search procedure iteratively exchanges the
position of two adjacent activities in the given priority list while a tabu
list prevents the recreation of the most recent moves. Using tabu search
surely improves the stability of the projected solution, though it is compu-
tationally more expensive. So, in some situations where many immediate
and fast reactions are necessary, tabu search might be less attractive than
the simple list scheduling approach.

24

CHAPTER 1. INTRODUCTION

1.4.3 Other notable reactive approaches in project
scheduling

Although our main focus is on reactive scheduling approaches for the
RCPSP with activity duration or resource availability uncertainty, some
notable borderline approaches are also discussed here.

Zhu et al. (2005) propose a general class of reactive scheduling prob-
lems and introduce a recovery problem. In their recovery problem, they
consider six different types of uncertainty (disruptions) that are listed as
follows: (1) a new activity disruption occurs when a set of new activities
and their corresponding precedence constraints are added to the project,
(2) a precedence disruption occurs when a number of precedence relations
are removed from or added to the project, (3) an activity duration disrup-
tion can occur when the duration of an activity is subject to uncertainty,
which is equivalent with the duration uncertainty focused in this thesis
and discussed in Section 1.4.1, (4) an activity resource disruption occurs
when an activity turns out to need more resources during execution than
planned, (5) a resource disruption occurs when a resource unit breaks,
which is equivalent with the resource availability uncertainty that is the
focus of this thesis in Section 1.4.2, and (6) a milestone disruption occurs
when the target time of a milestone moves. Zhu et al. (2005) also provide a
very general MILP model for their proposed recovery scheduling problem
and discuss it for a number of special cases, namely the resource uncon-
strained case, the single mode case, the multi-mode case, the case with
one renewable resource and the case with one non-renewable resource.
The recovery objective function for this general model considers the ini-
tial plan, the deviation from the initial plan and the cost to return back
on track. They present a hybrid mixed integer programming constraint
propagation (MIP/CP) solution approach to solve their MILP model.

Kuster et al. (2009) introduce a resource-constrained project schedul-
ing problem, called x-RCPSP, and propose a disruption management ap-
proach for the same problem under uncertainty. x-RCPSP is a variant of
RCPSP where a set of alternative activities are also included in the proj-
ect where activities can be activated or deactivated dynamically. Each
alternative activity possesses its individual sets of predecessors and suc-
cessors. Thus, activating or deactivating an activity might have an impact
on the activation or deactivation of some other activities. This fact dif-
ferentiates x-RCPSP from the multi-mode RCPSP. In a complementary
research, Kuster et al. (2010) propose three local rescheduling approaches
as disruption management approaches and compare them with the full

25

1.4. Reactive scheduling

rescheduling and the matchup scheduling12 (Bean et al., 1991) known from
literature.

Deblaere et al. (2011b) propose a model for the reactive multi-mode
RCPSP under uncertainty and provide a number of tree-based search
approaches, namely regular branch-and-bound, iterative deepening and
branch-and-bound with tabu search, to select the best reactive schedule.
They consider both activity duration disruptions and resource disruptions.
In their model, Deblaere et al. (2011b) assume that only one disruption
occurs and in cases where multiple disruptions occur, the reactive schedul-
ing approach is invoked more than once.

Besides the reactive RCPSP, the reactive project scheduling with-
out resource constraints has been studied several times (Klastorin and
Mitchell, 2013; Zhu et al., 2007). Zhu et al. (2007) propose a two-stage
stochastic programming approach for project planning under duration un-
certainty. The first stage problem (SP) is the minimization of an expected
cost that consists of two parts: the weighted sum of the completion times
and the sum of the expected total weighted deviations from the targeted
completion times over all scenarios. The former part, the weighted sum
of the completion times, is included directly in the objective function
whereas the latter one is computed indirectly by solving a second stage
problem (SSP). In the SSP, for every combination of a scenario and a vec-
tor of targeted completion times a total weighted earliness and tardiness
objective is computed to be minimized. Zhu et al. (2007) also include
the cost of crashing the activities into the SSP in two ways (SSP1 and
SSP2). In the SSP1, they add the cost of crashing as a constraint where
the total crashing costs must be less than or equal to a predefined total
crashing budget and in the SSP2, they add the cost of crashing to the ob-
jective function. Zhu et al. (2007) propose an LP-based heuristic for SSP1
and an efficient exact algorithm for SSP2. Klastorin and Mitchell (2013)
propose a multi-stage stochastic dynamic programming (SDP) approach,
tailored for the time/cost trade-off planning problem13, to both find a
stable baseline schedule and modify the baseline schedule when conflicts
occur. They consider a multi-criteria objective function that covers labor
costs, indirect costs and overhead costs.

12The matchup scheduling is a local rescheduling approach. The idea behind the
matchup scheduling is to reschedule everything before a matchup point which is incre-
mentally extended until a solution is constructed.

13For more details about the time/cost trade-off planning problem we refer to De-
meulemeester and Herroelen (2002)

26

Chapter 2

The proactive and reactive resource-constrained
project scheduling problem

Teachers can change lives with just the right mix of chalk and
challenges.

- Joyce Meyer

Traditionally, a proactive and reactive project scheduling approach is
a two stage approach. The first stage is to construct a schedule, which is
called the baseline schedule, that is as robust as possible against a certain
type of uncertainty (different types of uncertainty, such as activity du-
ration uncertainty and resource availability uncertainty, have been intro-
duced by several authors in the literature (Demeulemeester and Herroelen,
2011)). The second stage is to reschedule (react) reasonably whenever a
conflict in the ongoing schedule occurs. A conflict refers to the situation
where the schedule is no longer feasible.

A preliminary version of this chapter appeared as FEB Research Report KBI 1613
at KU Leuven (Davari and Demeulemeester, 2016a). This work has also been submitted
for publication.

27

Despite the popularity of the traditional proactive and reactive pro-
cedures, we noticed that in almost all of the studies, the authors forgot
two important aspects. First, these authors ignored the impact of the
choice of the reactive scheduling policy on the optimality of the baseline
schedule and vice versa. The only exception is the study by Deblaere
et al. (2011c) where the proactive and reactive scheduling problems are
solved simultaneously using a two-stage approach which outputs a base-
line schedule and a corresponding reasonably efficient early-start policy.
Not only does the procedure provide a simulation-based heuristic solu-
tion, but also the reactive policy is selected from a class of early start
policies which extremely limits the flexibility of the procedure. Second,
these authors simply assume that the number of reactions does not have
any effect on the robustness of the baseline schedule and on that of the
reactive policy. In fact, this assumption is inaccurate because of the same
reasons that motivate the necessity of the baseline schedule. Moreover,
we have to consider that not only each reaction costs some money, but it
also damages the business credibility of the contractor.

What we suggest is an alternative method that resembles many robust
optimization methods in the literature (Gabrel et al., 2014), specially re-
coverable robust optimization (Liebchen et al., 2009) and adjustable ro-
bust optimization (Ben-Tal et al., 2003; Shapiro, 2011). We try to tackle
a proactive and reactive resource-constrained project scheduling problem
(PR-RCPSP) considering the aforementioned forgotten aspects in project
scheduling. The basic idea behind PR-RCPSP is to select a schedule from
a given set of previously generated schedules and then foresee all required
transitions to other schedules from the same set for each possible resource
or precedence infeasibility. The combination of a baseline schedule and
a set of required transitions is called a proactive and reactive policy. The
detailed definition of the proactive-and-reactive policy is given in the next
section.

In robust scheduling, the idea of generating multiple schedules is not
new. For example, the contingent scheduling approach, which has been
classified as a proactive scheduling approach (Chaari et al., 2014; Her-
roelen and Leus, 2005), is based on the generation of multiple baseline
schedules. Another example is the very recent research by Akkan et al.
(2016) in which a pool of solutions is generated and different neighbor-
hoods of solutions are evaluated.

A schedule s is called infeasible if at least one activity i cannot be started at si
without violating any resource or precedence constraint.

28

CHAPTER 2. THE PR-RCPSP

With respect to the current literature, the novelty of our contribution
is three-fold. First, we introduce a novel way of reacting to conflicts.
Second, we model proactive and reactive project scheduling as a single
problem where the objective function includes the costs of reactions and
is to find an optimal proactive-and-reactive policy. Third, we introduce
four dynamic programming approaches (Models 1-4) that can solve the
problem over different subsets of policies. Note that Model 1, which is
outperformed by Models 2-4, is an intermediate model that simplifies the
understanding of Models 2-4.

2.1 Definition and problem statement

In this section, we introduce the proactive and reactive resource-constrained
project scheduling problem. The instances of the PR-RCPSP are very
similar to the instances of the deterministic RCPSP with the only differ-
ence in the nature of the activity durations. In PR-RCPSP, each activity
i ∈ N\{0, n+ 1} has an independent stochastic integer duration p̃i which
follows a discrete and bounded distribution (pmin

i ≤ p̃i ≤ pmax
i). Notice

that p̃0 = p̃n+1 = 0. We assume that the realized duration of the activ-
ity is only known when the execution of the activity is completed. The
vector p̃ = (p̃0, p̃1, ..., p̃n+1) can be represented by a finite supporting set
P = {p1, ...,p|P|} of realizations where each realization pl is represented
by a vector pl = (pl0, p

l
1, ..., p

l
(n+1)) ∈ P of realized durations. The prob-

ability of occurrence of the realization pl is shown by π(p̃ = pl). Beware
that P can be a very large set, and as such, is only used in this section
to facilitate introducing a compact formulation. Instead, our solution
methodologies directly use the information provided by the given discrete
distributions. Note that the methods proposed in this chapter are de-
signed for the settings where activity durations are independent and must
not be used in situations where activity durations are dependent.

2.1.1 Solution representation

A single schedule s, which is a vector of starting times, cannot represent a
solution because activity durations are stochastic. Instead, solutions are
proactive-and-reactive policies (PR-policy). We introduce two different
descriptions of a PR-policy in Section 2.1.1.1 and Section 2.1.1.2.

29

2.1. Definition and problem statement

2.1.1.1 Rule-based description

A PR-policy Π is described by a set of decisions rules that dictate certain
transitions among schedules. This set of decision rules that describe PR-
policy Π is referred to as the rule-based description of PR-policy Π. At
each decision moment, some information is become known, i.e., the set
of completed activities, the set of ongoing activities, the starting times
of the ongoing and completed activities and the current execution time.
This information defines the state of the execution. Each decision in PR-
policy Π is associated with a certain state of execution. We assume that
PR-policies behave consistently, i.e., given the same pieces of information
(state of execution), a PR-policy always makes the same decisions. In the
following, we discuss the relation between a PR-policy and a traditional
proactive and reactive scheduling solution.

In most reactive scheduling methods in the literature, a reaction is a
set of rules that dictate a certain rescheduling of activities in order to
resolve conflicts. Alternatively, we consider a reaction as the transition
from one schedule to another schedule. Let U(s, t) represent the set of not
yet started activities in schedule s at time t. A transition from schedule
s to schedule s′ is acceptable if and only if U(s, t) = U(s′, t) and si = s′i
for all i ∈ N \ U(s, t).

A PR-policy Π not only determines reactions, but also selects one
schedule as the baseline schedule. Let us consider the dummy schedule
s0 = (0, 0, . . . , 0). This schedule, that is by definition infeasible to any
given realization, represents the start of the project where no baseline
schedule is present and no information is available. A PR-policy Π de-
termines the baseline schedule, shown by s[0]Π , as the result of a reaction
from s0 at time 0.

Let S(pl) be the set of all feasible schedules for a given realization
pl. To address all possible schedules, we introduce the set S of schedules
that can be constructed as follows S = S(p1)∪ · · · ∪S(p|P|). Since in the
general case, S is a very large set, we define a much smaller set S ⊂ S
as the set of schedules. For practical reasons, we use the set S rather
than S in our models (Models 1-4) in Section 2.2. Although the choice of
the set S has a big influence on the performance of Models 1-4, it is not
the focus of this chapter to find the best sets of schedules. However, in
Section 2.2.1.5, we will explain a few heuristic approaches that construct
reasonably good sets of schedules.

In this research, we merely consider PR-policies that dictate transi-
tions among schedules only when conflicts occur. Such transitions are

30

CHAPTER 2. THE PR-RCPSP

referred to as conflict-based transitions and PR-policies that consist of
only conflict-based transitions are called conflict-based PR-policies. In
the remainder of this chapter, for the sake of simplicity and without loss
of generality, we simply refer to conflict-based PR-policies as PR-policies
unless expressly stated otherwise (for example see Section 2.4).

2.1.1.2 Chain-based description

In order to start the execution of the project, a PR-policy Π selects a base-
line schedule (s[0]Π). The execution is continued until the first conflict oc-
curs. Since it is not known which realization will occur, PR-policy Π uses
only the information that is available in the current state of the execution
to transit to a second schedule. After that, the execution is continued un-
til another conflict occurs. Then, PR-policy Π enforces another transition
to a third schedule. PR-policy Π makes a series of transitions until either
all conflicts are resolved or there is no schedule to which a transition from
the current schedule is possible. The latter situation is referred to as a
deadend. Notice that deadends only occur when we have a limited number
of schedules in our set of schedules.

For each realization pl (in case it occurs), PR-policy Π enforces a chain
(series) of νΠ,l reactions. This chain is denoted by ΦΠ,l:

ΦΠ,l : s[0]Π t=t1−−−→ s[1]Π,l t=t2−−−→ s[2]Π,l t=t3−−−→ . . .
t=tνΠ,l−−−−−→ s[νΠ,l]Π,l .

The occurred realization and its associated chain of reactions are
known only when the execution of the project has ended (either all ac-
tivities are completed or a deadend is reached). Since PR-policies are
consistent, the baseline schedule must be the same for all chains (realiza-
tions).

A chain with a deadend is called a deadchain. We introduce the param-
eter γΠ,l which equals one if ΦΠ,l is a deadchain and equals zero otherwise.
We compute the incurred combined cost of PR-policy Π for each chain
ΦΠ,l. This combined cost, denoted by f(Π, l), is also used as a measure
for stability and robustness in Section 2.3:

f(Π, l) = wb × s
[0]Π
n+1 +

νΠ,l∑
k=1

 ∑
i∈U(s[k−1]Π,l ,tk)

wik|s
[k]Π,l
i − s

[k−1]Π,l
i |+ wr

+ γΠ,lM.

31

2.1. Definition and problem statement

where wb ≥ 0 is the cost per unit time for the completion time of the
baseline schedule, wr ≥ 0 is the fixed cost incurred with each reaction,
wik ≥ 0 is the stability cost of activity i in the kth reaction and M
represents the penalty of having a deadend. This cost function consists
of three parts: the cost of the baseline schedule, the cost of a series of
reactions and the cost of having a deadend.

A PR-policy Π, which is described by a set of decision rules, can also
be described by its associated set of chains:

Π : {ΦΠ,1,ΦΠ,2, ...,ΦΠ,|P|}.

This set of chains, which describes Π, is referred to as the chain-based
description of Π. This description enables us to compute the expected
combined cost of PR-policy Π:

|P|∑
l=1

π(p̃ = pl)f(Π, l).

Notice that the occurring realization is not known until the end of the
execution and therefore the chain-based description, unlike its rule-based
counterpart, is too confusing to be used in practice. However, it can be
perfectly used in our problem formulation.

A PR-policy Π includes a schedule if that schedule has been a part of
at least one of the chains that describe Π. It might be interesting to know
what the worst case size of a PR-policy is, i.e., the number of schedules
that are included in that PR-policy. Let mi be the number of modes
(i.e., the number of different durations) of activity i.

Theorem 2.1. The size of the chain-based description of a PR-policy is
bounded by |P|

∑
i∈N mi.

Proof. Each PR-policy includes |P| chains. This number, though, can be
very large. For each chain (or realization), we can have at most

∑
i∈N mi

reactions. Therefore, we infer that both the maximum number of sched-
ules that are included and the maximum number of reactions that are
needed in a PR-policy is bounded by |P|

∑
i∈N mi.

2.1.2 Conceptual formulation

We define Π as the set of all possible PR-policies (i.e., the set of PR-
policies that can be constructed by S). Our problem (PR-RCPSP) which

32

CHAPTER 2. THE PR-RCPSP

is denoted for simplicity by P is formulated as follows:

P : min
Π∈Π

|P|∑
l=1

π(p̃ = pl)f(Π, l).

Theorem 2.2. P is an NP-hard problem in the strong sense.

Proof. We prove the NP-hardness of our problems by reduction from the
deterministic RCPSP. Consider an instance of the deterministic RCPSP
with activity duration vector p[det]. Set wb = 1, π(p̃i = p) = 1 if p = p

[det]
i

and π(p̃i = p) = 0 if p 6= p
[det]
i . Since the durations are deterministic, no

reaction will be in the optimal policy for this instance. Therefore, P finds
a baseline schedule with the minimum makespan.

P is a very difficult problem to solve, even for very small instances.
We propose to solve P1 which includes a smaller set of policies:

P1 : min
Π∈Π1

|P|∑
l=1

π(p̃ = pl)f(Π, l).

In the above formulation, Π1 is the set of all PR-policies that only
include the schedules in S. Model 1 which is proposed in Section 2.2.1
optimally solves P1 in a reasonable computation time where |S| ≤ 2000.
Readers might question why we limit ourselves to PR-polices which se-
lect schedules only from S. Selecting schedules only from S may lead to
inflexible reactions and thus a high combined cost specially when |S| is
too small. Therefore, we will introduce P2, P3 and P4 in Section 2.2.2-
2.2.4 that search over much larger classes of PR-policies and are optimally
solved by Model 2, Model 3 and Model 4.

2.1.3 Example project

Let us describe an example project that provides a better understanding
of our problem. Note that this example project will also be used and
extended in other sections of this chapter and the next two chapters.
Our example project includes 8 real activities and one resource type with
an availability of 8. Figure 2.1 depicts the precedence relations and the
resource requirements of activities of the project. Each node represents an
activity, each arc represents a precedence relation and the number above
each node shows the resource requirement for that activity.

33

2.1. Definition and problem statement

i

ri1

R1 = 8

2

3

7

3

8

4

1

2

3

4

5

3

4

4

6

2

Figure 2.1: A copy of Figure 1.1.

p̂i π(p̃i = p̂i + ε) wi,0
ε = −1 ε = 0 ε = +1

p̃0 0 0 1 0 -
p̃1 2 0.4 0.4 0.2 4
p̃2 7 0.3 0.5 0.2 4
p̃3 3 0 0.6 0.4 7
p̃4 4 0.1 0.5 0.4 1
p̃5 8 0.2 0.8 0 4
p̃6 6 0.4 0.6 0 1
p̃7 4 0.5 0.5 0 1
p̃8 2 0 0.7 0.3 1
p̃9 0 0 1 0 38

Table 2.1: The distribution of activity durations and the weights of the activ-
ities for the first reaction.

The activity durations for this example follow the distributions given
in Table 2.1. In this table, p̂i denotes the discrete average duration and
ε is the possible deviation from this average value. Each fractional value
represents the probability that p̃i = p̂i + ε. For instance, the probability
that p̃1 = 1 is 0.4. The probabilities in each row must obviously sum up
to 1. Table 2.1 also include the stability cost of each activity. We assume
that wi,k = wi,0 for all k = 0, 1, ..., nmmax.

For this example, there are 25×33 = 864 realizations. Each realization
occurs with a certain computable probability of occurrence. For example,
p1 = (0, 2, 8, 3, 5, 7, 5, 4, 2, 0) is a vector of durations which represents a

34

CHAPTER 2. THE PR-RCPSP

sk

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

sk0 0 0 0 0 0 0 0 0 0 0
sk1 0 0 0 0 0 0 0 0 0 0
sk2 1 1 0 1 5 0 7 4 2 7
sk3 3 3 4 4 3 3 3 3 5 5
sk4 0 0 4 0 0 7 0 0 0 9
sk5 6 6 7 7 7 7 7 7 9 14
sk6 6 6 7 7 7 12 5 7 9 14
sk7 7 8 7 8 12 12 14 12 11 15
sk8 11 13 13 12 15 15 17 15 15 20
sk9 13 15 15 15 17 18 19 18 18 23

Table 2.2: A given set S for the example project.

single realization and its chance of occurrence is approximately 0.054%
(the corresponding probabilities are indicated in bold in Table 2.1).

The set of schedules (S) that is given in Table 2.2 contains only 10
schedules. The scheduling parameters wb, wr and M are given as follows:
wb = 40, wr = 20 and M = 1000.

Consider a PR-policy Π1 with the following rule-based description:

• The baseline schedule is s9.

• At time 2 if the current schedule is s9 and activities 1 and 4 are
ongoing, then react to schedule s8.

• At time 4 if the current schedule is s8 and activities 3 and 4 are
ongoing, then react to schedule s5.

While the rule-based description is suitable for managerial purposes, a
chain-based description is needed to compute the cost of the policy. The
chain-based description of PR-policy Π1 is given as follows:

Π1 :

ΦΠ1,l1 : s9 pl1 ∈ P1

ΦΠ1,l2 : s9 t=2−−→ s8 pl2 ∈ P2

ΦΠ1,l3 : s9 t=2−−→ s8 pl3 ∈ P3

ΦΠ1,l4 : s9 t=2−−→ s8 t=4−−→ s5 pl4 ∈ P4

ΦΠ1,l5 : s9 t=2−−→ s8 t=4−−→ s5 pl5 ∈ P5

35

2.1. Definition and problem statement

where

P1 = {pl|pl1 ≤ 2, l = 1, ..., |P|},
P2 = {pl|pl1 > 2, pl4 ≤ 4, s8 is infeasible for pl, l = 1, ..., |P|},
P3 = {pl|pl1 > 2, pl4 ≤ 4, s8 is feasible for pl, l = 1, ..., |P|},
P4 = {pl|pl1 > 2, pl4 > 4, s5 is infeasible for pl, l = 1, ..., |P|},
P5 = {pl|pl1 > 2, pl4 > 4, s5 is feasible for pl, l = 1, ..., |P|},

and P1∪P2∪P3∪P4∪P5 = P. Note that the total number of chains is
864. Each chain ΦΠ1,lx in the above description represents a set of iden-
tical chains. For example, ΦΠ1,l1 represents a set of 576 chains associated
with all realizations pl ∈ P1 (|P1| = 576).

PR-policy Π1 selects s9 as the baseline schedule. If p1 occurs, s9

never becomes infeasible and thus no reaction is needed. However, if
p2 = (0, 3, 8, 3, 4, 8, 5, 4, 2, 0) occurs, s9 becomes infeasible at time 2 (Fig-
ure 2.2(a)) and Π1 dictates a transition from s9 to s8 to resolve the infea-
sibility. The associated Gantt charts are depicted in Figure 2.2. The cost
of this reaction is computed as follows:∑
i∈U(s9,2)

wi,1|s8
i − s9

i |+ wr = |4− 2| × 4 + |3− 5| × 7 + |7− 9| × 4

+ |7− 9| × 1 + |12− 11| × 1 + |15− 15| × 1

+ |18− 18| × 38 + 20 = 53.

If p3 = (0, 3, 8, 3, 5, 8, 5, 4, 2, 0) occurs, Π1 dictates a reaction from s9 to
s8 to resolve the infeasibility at time 2 and a reaction from s8 to s5 to
resolve the infeasibility at time 4 (the associated Gantt charts are depicted
in Figure 2.2). The cost of the second reaction is computed as follows:∑

i∈U(s8,4)

wi,2|s5
i − s8

i |+ wr = 62.

For each realization pl in P1, we compute the cost of the associated
chain as follows: f(Π1, l) = 40× 18 = 720. The cumulative probability of
occurrence of realizations in P1 equals

∑
l∈P1

π(p̃ = pl) = 0.80. Similarly
we compute:

• for each pl ∈ P2, f(Π1, l) = 720 + 53 + 1000 = 1773,

• for each pl ∈ P3, f(Π1, l) = 720 + 53 = 773,

36

CHAPTER 2. THE PR-RCPSP

8

30%

1 5 10 15

1

7
50%

5
80%

3

40%

4
50%

40%

6
60%

2
50%

20%

𝑡 = 2 𝑠9
9

8

4

(a) Gantt chart for schedule s9 which becomes infeasible at time 2 for realiza-
tions p2 and p3

2
50%

20%

8

30%

1 5 10 15

1

7
50%

5
80%

4
50%

40%

6
60%

𝑡 = 2 𝑠9
8

8

4

3

40%

(b) Gantt chart for schedule s8 which is feasible at time 2 for realizations p2

and p3

Figure 2.2: An example reaction. The infeasibility is resolved by a transition
from schedule s9 to schedule s8 at time 2. The length of each
box indicates the minimum possible duration for the associated
activity. Other possible durations of an activity are indicated
by horizontal bars together with their probabilities of occurrence.
Note that at time t, the lengths of the associated boxes of finished
activities represent their realized duration. Also notice that the
minimum length of the box associated with an ongoing activity
cannot be less than or equal to its realized duration so far.

37

2.1. Definition and problem statement

2
50%

20%

8

30%

1 5 10 15

1

7
50%

5
80%

4

6
60%

𝑡 = 4

𝑠9
8

8

4

3

40%

(c) Gantt chart for schedule s8 which becomes infeasible at time 4 for realization
p3

8

30%

7
50%

3

40%

2
50%

20%

1 5 10 15

1
5

80%

4

6
60%

𝑡 = 4 𝑠9
5

8

4

(d) Gantt chart for schedule s5 which is feasible at time 4 for realization p3

Figure 2.2: An example reaction (continued).

• for each pl ∈ P4, f(Π1, l) = 720 + 53 + 62 + 1000 = 1835 and

• for each pl ∈ P5, f(Π1, l) = 720 + 53 + 62 = 835.

Also,
∑
l∈P2

π(p̃ = pl) = 0.06,
∑
l∈P3

π(p̃ = pl) = 0.06,
∑
l∈P4

π(p̃ = pl) =

0.0576 and
∑
l∈P5

π(p̃ = pl) = 0.0224. The expected combined cost of
PR-policy Π1 is

|P|∑
l=1

π(p̃ = pl)f(Π1, l) = 0.80× 720 + 0.06× (1773 + 773) + 0.0576× 1835

+ 0.0224× 835 = 853.16.

38

CHAPTER 2. THE PR-RCPSP

PR-policy Π1 happens to be the optimal PR-policy for P1.

2.2 Solution methodology

Problem P can be modeled as a Markov decision process (MDP). We
propose four MDPs in this section, namely Model 1, Model 2, Model 3
and Model 4. Model 1, which will be explained in Section 2.2.1, opti-
mally solves P1 for a given set of schedules. Nevertheless, this model
only searches over a limited set of PR-policies. Therefore, we also provide
Models 2-4 in the following subsections, which search over much larger
sets of PR-policies than that of P1.

This is not the first time MDPs are used to deal with stochasticity in
project scheduling. We refer interested readers to Creemers et al. (2010)
and Creemers (2015).

2.2.1 Model 1

As we mentioned above, Model 1 is an MDP that optimally solves P1.
Our model description is structured as follows. First, the state represen-
tation is given. Then, the transitions among states are introduced. Next,
the recursion system is described. After that, we introduce a graph rep-
resentation by means of an example and finally, an algorithm is proposed
to generate the set of schedules.

2.2.1.1 State representation

The combination (s, t, O, ν) represents a state in Model 1 where s rep-
resents the current schedule, t is the current time, O denotes the set of
ongoing activities at time t and ν is the total number of reactions that
previously occurred upon entrance of the state.

States are labeled either as feasible or infeasible. Let J(s, t) be the set
of all activities in s that are supposed to be started at time t.

Definition 2.1 (Feasible vs infeasible states). A state (s, t, O, ν) is fea-
sible if it is possible to execute all activities in J(s, t) ∪O in parallel and
is infeasible otherwise.

Example. Figure 2.2(a) depicts the Gantt chart of s9 at time 2 for re-
alization p2. The associated state is (s9, 2, {1, 4}, 0). This state is an

39

2.2. Solution methodology

infeasible state since the set of activities J(s9, 2) ∪ {1, 4} = {1, 2, 4} can-
not be executed in parallel. Figure 2.2(b) depicts the Gantt chart of s8 at
time 2 for realization p2. The associated state is (s8, 2, {1, 4}, 1) which is
a feasible state because the set of activities J(s8, 2) ∪ {1, 4} = {1, 4} can
be executed in parallel.

2.2.1.2 Transitions

Upon leaving a state, we enter another state. Entering state (s, t, O, ν)
means that schedule s is considered for execution, the current time is t,
the activities in O are ongoing and we have already reacted to conflicts
ν times. Depending on whether we face a conflict (the current state is
infeasible) or not (the current state is feasible), and also depending on the
realization and the PR-policy we choose, we could enter a different state.

A transition between two states is possible if and only if an arc exists
between those two states. The states are connected via two types of arcs:
chance arcs and decision arcs. Chance arcs leave feasible states whereas
decision arcs leave infeasible states.

If state (s, t, O, ν) is feasible, it means no conflict is happening and
there is no need for any reaction at that decision moment. In this case,
a transition is required to a new state (s, t′, O′, ν) where t′ is the next
decision moment in s after t and O′ ⊆ O∪J(s, t). The set O′ might differ
depending on which realization occurs. Therefore, the number of chance
arcs leaving a state might be more than one. Upon leaving a feasible state,
we may enter one of the states to which a chance arc exists from the left
state. A chance arc that connects (s, t, O, ν) to (s, t′, O′, ν) is denoted
by (s, t → t′, O → O′, ν). Because the probability of occurrence of each
realization is known, we can compute the probability of transition over a
certain chance arc (π(s, t→ t′, O → O′, ν)) as follows:

π(s,t→ t′, O → O′, ν) =
∏

i∈O∩O′

π(si + p̃i > t′)

π(si + p̃i > t)
×

∏
i∈J(s,t)∩O′

π(t+ p̃i > t′)

×
∏

i∈O\O′

(
1− π(si + p̃i > t′)

π(si + p̃i > t)

)
×

∏
i∈J(s,t)\O′

(1− π(t+ p̃i > t′)).

Note that the summation of the probabilities of chance arcs leaving a
feasible state must equal 1. If O = ∅ and J(s, t) = {n + 1}, then the
execution has already completed and no chance arc leaves (s, t, O, ν). In
this case, (s, t, O, ν) is an endstate.

40

CHAPTER 2. THE PR-RCPSP

s8, 2, {1, 4}, 0 s8, 3, {4}, 0

s8, 3, ∅, 0

0.90

0.10

Figure 2.3: Chance arcs leaving (s8, 2, {1, 4}, 0).

Example. Figure 2.2(b) depicts the Gantt chart associated with state
(s8, 2, {1, 4}, 1). If we move to the next decision moment, which is time 3,
depending on which realization occurs, we arrive to one of two different
states: (s8, 3, {4}, 1) or (s8, 3, ∅, 1). Figure 2.3 demonstrates the chance
arcs leaving state (s8, 3, {1, 4}, 1). We compute the probability of each
chance arc leaving (s8, 3, {1, 4}, 1) as follows:

π(s8, 2→ 3, {1, 4} → {4}, 1) =
0.90

1
×
(

1− 0

0.2

)
= 0.90,

π(s8, 2→ 3, {1, 4} → ∅, 1) =

(
1− 0

0.2

)
×
(

1− 0.90

1

)
= 0.10.

Upon leaving an infeasible state, we decide to transit to a feasible state.
However, not all such transitions are valid. There does exist a decision
arc from an infeasible state (s, t, O, ν) to a feasible state (s′, t, O, ν + 1) if
and only if U(s, t) = U(s′, t) and si = s′i for all i ∈ N \U(s, t). Figure 2.4
depicts a Gantt chart illustration of a valid transition from (s, t, O, ν) to
(s′, t, O, ν + 1). In this Gantt chart representation of the schedules, F
represents the finished activities, O represents the ongoing activities at
time t and U(s, t) represents the activities in the schedule s that have not
started their execution before time t. Note that although it might not be
clear in the Gantt charts, the starting times of activities in F and O should
be exactly the same for the two schedules. In reality, a transition from s
to s′ at time t means that the management team decides to continue the
execution of the project according to schedule s′ (instead of the infeasible
schedule s) from time t until a further conflict occurs. These transitions
are called normal transitions. In the following subsections, we propose
other types (namely, flexible, cut and wise transitions) of transitions.

For each infeasible state (s, t, O, ν), we introduce Γ1(s, t, O) that rep-
resents the set of all schedules to which a valid transition from (s, t, O, ν)
exists. In other words, if S′ ∈ Γ1(s, t, O), then there exists a transition
from (s, t, O, ν) to (s′, t, O, ν+ 1). The larger the set Γ1(s, t, O), the more
flexibility we have in reacting. We noticed that if S is a finite set, the set

41

2.2. Solution methodology

F

t

U(s, t)
O

F

t

U(s′, t)
O

s

s′

O

O

Figure 2.4: Transition from s to s′ at time t.

s9, 2, {1, 4}, 0

s5, 2, {1, 4}, 0

s7, 2, {1, 4}, 0

s8, 2, {1, 4}, 0

95

111

53

Figure 2.5: Decision arcs leaving (s9, 2, {1, 4}, 0).

Γ1(s, t, O) might be an empty set for some combinations of s, t and O. If a
state (s, t, O, ν) is infeasible and Γ1(s, t, O) = ∅, then we have no reaction
possibility. Such a state is called a deadstate. Notice that a deadstate is
the last state in a deadchain and its corresponding schedule is a deadend
for the associated state of execution.

Example. Consider the infeasible state (s9, 2, {1, 4}, 0). We compute the
set of schedules that are valid candidates for reaction: Γ1(s9, 2, {1, 4}) =
{s5, s7, s8}. Figure 2.5 demonstrates the decision arcs leaving the infea-
sible state (s9, 2, {1, 4}, 0). The number depicted on each arc represents
the cost of the associated reaction. For example, the cost of reacting to
schedule s5 is 95.

2.2.1.3 Dynamic programming recursion

We introduce d1(s → s′, t, O, ν → ν + 1) as the expected cost until the
end of execution if we decide to transit from (s, t, O, ν) to (s′, t, O, ν + 1)

42

CHAPTER 2. THE PR-RCPSP

in Model 1. We also introduce c1(s, t, O, ν) as the expected cost until the
end of execution upon leaving feasible state (s, t, O, ν). First, we compute
the expected cost until the end of the execution for each decision arc:

d1(s→ s′, t, O, ν → ν + 1) = wr +
∑

i∈U(s,t)

(
wi(ν+1)|s′i − si|

)
+ c1(s′, t, O, ν + 1). (2.1)

Then, the best decision and its associated expected cost are computed as
follows:

s∗ ∈ arg min
s′∈Γ1(s,t,O)

{d1(s→ s′, t, O, ν → ν + 1)} (2.2)

d∗1(s, t, O, ν) = d1(s→ s∗, t, O, ν → ν + 1). (2.3)

Let F1 be the set of all feasible states and I1 be the set of all infeasible
states in Model 1. Likewise, the set of all endstates and the set of all dead-
states are denoted by E1 and D1, respectively. The function c1(s, t, O, ν)
is computed as follows (remember that the expected cost of an endstate
is zero):

c1(s,t, O, ν) =
∑

(s,t′,O′,ν)∈F1\E1
π(s, t→ t′, O → O′, ν) ∗ c1(s, t′, O′, ν)

+
∑

(s,t′,O′,ν)∈I1\D1

π(s, t→ t′, O → O′, ν) ∗ d∗1(s, t′, O′, ν)

+
∑

(s,t′,O′,ν)∈D1

π(s, t→ t′, O → O′, ν) ∗M. (2.4)

Note that in the above equation, t′ is always the next decision moment
after t and O′ is whatever set that satisfies O′ ⊆ O ∪ J(s, t).

We need to select one of the schedules in S as the baseline sched-
ule. To that end, we can use the information provided while solving our
model. The cost of choosing schedule s as the baseline schedule equals
c1(s, 0, ∅, 0) + wbsn+1. Therefore, we select the baseline schedule (sbase)
as follows:

sbase ∈ arg min
s∈S

{c1(s, 0, ∅, 0) + wbsn+1}. (2.5)

It is straightforward to see that the recursion system (2.1)-(2.5) opti-
mally solves P1 and the optimal objective value equals c1(sbase, 0, ∅, 0) +
wbs

base
n+1. Let Omax be the set of ongoing activities with maximum cardinal-

ity. The total number of states is in the order of O(n2|Omax||S|
∑
i∈N mi)

43

2.2. Solution methodology

and the maximum number of arcs (chance arcs or decision arcs) leaving
a state equals max{2|Omax|, |S|}. Therefore, Model 1 can be solved in
O(n22|Omax||S|

∑
i∈N mi max{2|Omax|, |S|}) time.

2.2.1.4 Graph representation

In this section, we present a graph representation for Model 1 (Figure 2.6).
Each state is represented by a node: green nodes represent feasible states,
red nodes represent infeasible states and gray nodes represent deadstates.
The number shown above each state (s, t, O, ν) indicates the expected
cost until the end of execution upon leaving, which equals c1(s, t, O, ν) for
feasible states, d∗1(s, t, O, ν) for infeasible states or M for deadstates. Each
transition (reaction) is represented by an arc: green arcs are decision arcs
and red arcs are chance arcs. The number shown over each chance arc is
the probability of crossing that chance arc. The number shown over each
decision arc is either the cost of the baseline schedule (which is the case
for the arcs leaving the start node) or the cost of the associated reaction
(which is the case for the arcs leaving any infeasible state expect the start
node). Note that the start node represents the situation where even the
baseline schedule is not yet decided.

For the example project, the start node is incident to ten different
feasible states, each representing one potential baseline schedule. Due to
lack of space we only depict a small part of the network. For example,
upon entering (s1, 0, ∅, 0), activities 1 and 4 are started. In s1, the next
decision moment after 0 is 1. Because activity 4 certainly takes longer
than 1 time unit and activity 1 can last 1, 2 or 3 time units, either of the
following two transitions can occur upon leaving (s1, 0, ∅, 0): a transition
to the infeasible state (s1, 1, {1, 4}, 0), where activities 1 and 4 are ongoing
at decision moment 1 and activity 2 is about to start, or a transition to
the feasible state (s1, 1, {4}, 0), where activity 4 is ongoing at decision
moment 1 and activity 2 is about to start. The former transition occurs
with a probability of 60% while the latter one occurs with a probability of
40%. Knowing the expected costs until the end of execution upon leaving
the states (s1, 1, {1, 4}, 0) and (s1, 1, {4}, 0), we can simply compute the
expected cost until the end of execution upon leaving the state (s1, 0, ∅, 0)
as follows:

c1(s1, 0, ∅, 0) = 0.40× c1(s1, 1, {4}, 0) + 0.60× d∗1(s1, 1, {1, 4}, 0)

= 0.40× 985.15 + 0.60× 472.93 = 677.82.

44

CHAPTER 2. THE PR-RCPSP

N
e
tw

o
rk

g
u
id

e
:

re
d
:

in
fe

a
si

b
le

c
o
st

g
re

e
n
:

fe
a
si

b
le

c
o
st

g
re

y
:

d
e
a
d
st

a
te

c
o
st

D
e
c
si

o
n

a
rc

C
h
a
n
c
e

a
rc

st
a
rt

8
5
3
.1

6

s
1
,
0
,
∅,

0

6
7
7
.8

2

s
2
,
0
,
∅,

0

5
9
6
.4

0

s
3
,
0
,
∅,

0

1
0
0
0
.0

0

s
4
,
0
,
∅,

0

5
8
3
.6

8

s
5
,
0
,
∅,

0

7
2
0
.0

0

s
6
,
0
,
∅,

0

6
0
0
.0

0

s
7
,
0
,
∅,

0

7
2
0
.0

0

s
8
,
0
,
∅,

0

6
1
2
.8

0

s
9
,
0
,
∅,

0

1
3
3
.1

6

s
1
0
,
0
,
∅,

0

0
.0

0

5
2
0

6
0
0

6
0
0

6
0
0

6
8
0

7
2
0

7
6
0

7
2
0

7
2
0

9
2
0

s
1
,
1
,
{4
},

0

9
8
5
.1

5

s
1
,
1
,
{1
,
4
},

0

4
7
2
.9

3

0
.4

0

0
.6

0

s
1
,
3
,
{2
},

0

8
2
1
.5

0

s
1
,
3
,
{2
,
4
},

0

1
0
0
3
.3

3
0
.1

0

0
.9

0

s
1
,
6
,
{2
},

0

7
0
2
.5

0

s
1
,
6
,
{2
,
3
},

0

1
0
0
0

0
.6

0

0
.4

0

s
5
,
1
,
{1
,
4
},

1

7
2
0
.0

0

s
7
,
1
,
{1
,
4
},

1

7
2
0
.0

0

s
8
,
1
,
{1
,
4
},

1

6
1
2
.8

0

s
9
,
1
,
{1
,
4
},

1

2
2
1
.9

3

2
0
2

2
9
0

2
3
6

2
5
1

s
9
,
2
,
{4
},

1

0
.0

0

s
9
,
2
,
{1
,
4
},

1

6
6
5
.8

0
0
.6

7

0
.3

3

s
3
,
4
,
{2
},

0

1
0
0
0

1
.0

0

s
9
,
2
,
{1
,
4
},

0

6
6
5
.8

0

s
9
,
2
,
{4
},

0

0
0
.2

0

0
.8

0

s
5
,
2
,
{1
,
4
},

1

7
2
0
.0

0

s
7
,
2
,
{1
,
4
},

1

7
2
0
.0

0

s
8
,
2
,
{1
,
4
},

1

6
1
2
.8

0

s
8
,
3
,
{4
},

1

6
2
5
.3

3

s
8
,
3
,
∅,

1

5
0
0
.0

0

9
5

1
1
1

5
3

0
.9

0

0
.1

0

Figure 2.6: A part of the network of Model 1 associated with the example in
Section 2.2.1.4.

45

2.2. Solution methodology

Figure 2.6 also indicates in dark black part of an optimal PR-policy
Π1. PR-policy Π1, as stated in the definition of PR-policy, enforces certain
decisions for each infeasible state. For example, among all arcs leaving
the start node, Π1 chooses (s9, 0, ∅, 0) and therefore s[0]Π1 = s9. Also
upon leaving (s9, 2, {1, 4}, 0), which is an infeasible state and represents a
conflict in schedule s9 at time 2 when activities 1 and 4 are ongoing and
activity 2 is about to start, Π1 dictates a transition to (s8, 2, {1, 4}, 1).
Notice that the expected cost until the end of execution upon leaving the
state (s9, 2, {1, 4}, 0) is computed as follows:

d∗1(s9, 2, {1, 4}, 0) = min{612.80 + 53, 720 + 111, 720 + 95} = 665.80.

2.2.1.5 The set of schedules

In Algorithm 2.1, we present a pool generation procedure (PGP) that out-
puts a set of schedules given a set of initial schedules. In this proce-
dure, κ1 is the exact number of schedules that will be generated. Due to
the high computational complexity of our methods, we limit ourselves to
κ1 ≤ 2000. A number of subprocedures are also used in PGP which will
be explained in the following lines: rndSchedule(S) returns one sched-
ule which is selected randomly from the set S of all already generated
schedules, rndRealization(P) returns a random realization, infeas(s,pl, t)
returns true if schedule s becomes infeasible at decision moment t for re-
alization pl and returns false otherwise and nextDM(s, t) returns the next
decision moment after t in schedule s. The subprocedure react(s,pl, t)
which reacts to the conflict at decision moment t is a robust parallel
schedule generation scheme (RP-SGS) introduced by Van de Vonder et al.
(2007a) where the duration vector is p̂ and the scheme’s priority rule is
the earliest baseline activity starting time (EBST).

Depending on what initial set we select, what value we choose for κ1

and what is the reaction policy, PGP results in different sets of schedules.
The initial set could be one of the following: 1) a set including one sin-
gle schedule that is the optimal schedule for the deterministic case where
the duration vector is p̂ (we refer to this set as DET), 2) a set including
13 schedules that are the outcome of the starting time criticality (STC)
procedure proposed by Van de Vonder et al. (2008), each with a differ-
ent α selected from {1, 1.025, 1.050, ..., 1.25, 1.275, 1.3} (we refer to this
set as STC) and 3) a set of fifty schedules generated by Algorithm 2.2
(we set κ2 = 50 and κ3 = 4). Notice that the notation α is borrowed
from the notation system in Van de Vonder et al. (2008) and as such

46

CHAPTER 2. THE PR-RCPSP

Algorithm 2.1 Pool generation procedure (PGP)

Input: A set Sinit of initial schedules

1: S← Sinit

2: nS ← |Sinit|
3: while nS < κ1 do
4: s← rndSchedule(S)
5: pl ← rndRealization(P)
6: t← 0
7: while t ≤ sn+1 do
8: if infeas(s,pl, t) then
9: s′ ← react(s,pl, t)

10: s← s′

11: if s /∈ S then
12: S← S ∪ {s}
13: nS ← nS + 1
14: if nS = κ1 then
15: break
16: t← nextDM(s, t)

Output: S

Algorithm 2.2 An initial pool generation scheme

1: Sinit ← ∅
2: nS ← 0
3: while nS < κ2 do
4: generate κ3 random realization p1, ...,pκ3

5: pmax ← max{p1, ...,pκ3}
6: s← DH(pmax)
7: Sinit ← Sinit ∪ {s}
8: nS ← nS + 1

Output: Sinit

must not be confused with (1 − α) that denotes the confidence level in
Chapter 4. In Algorithm 2.2, the subprocedure DH(·) optimally solves
the deterministic RCPSP using the branch-and-bound method proposed
by Demeulemeester and Herroelen (1992, 1997) (we refer to this set as
SMP which stands for sampling).

47

2.2. Solution methodology

2.2.2 Model 2

In Section 2.2.1, Model 1 which optimally solves P1 was proposed. The
optimal PR-policy to P1 has a reasonable combined cost only if the given
set of schedules is very large. However, as we have already mentioned,
Model 1 is not computationally tractable when the given set of schedules
is large and thus we only can solve instances of P1 where the given set
of schedules is very small. This results in a high probability of having
many deadends in the optimal PR-policy and leads to a very high opti-
mal combined cost. This motivated us to investigate what would be an
alternative model that searches over larger sets of PR-policies and yet be
computationally tractable.

The poor performance of Model 1 is mainly because of its inflexibility
in reactions. In Model 2, we try to relax some criteria to allow more
flexibility in reactions. We noticed that it is only needed to know the
current state of execution of the project rather than the starting times
of the activities that have already been started. More specifically, in the
new model, a transition from (s, t, O, ν) to (s′, t+ de,O, ν + 1) is possible
if three conditions are met: 1) si = s′i + de,∀i ∈ O, 2) the equality
U(s, t) = U(s′, t+de) holds and 3) either of the two criteria below is true:

• t+ de is a decision moment in s′ and (s′, t+ de,O, ν + 1) is feasible.

• t+ de is not a decision moment in s′.

Note that de is whatever constant value (including 0). This transition is
called a flexible transition.

Figure 2.7 illustrates the condition in which a flexible transition from
s to s′ is valid. In reality, a flexible transition results in a new schedule
that might not exist within the set of schedules, but can be implied by
the schedules in the set. In other words, the flexible transition from
(s, t, O, ν) to (s′, t+ de,O, ν+ 1) means that the managerial team decides
to continue the execution of the project according to s# (the schedule at
the very bottom of Figure 2.7), from time t until another conflict occurs in
the schedule. The schedule s# might not exist in the set of all schedules,
but it can be deduced from s and s′ as explained below:

s#
i =

{
si if si < t

s′i − de if si ≥ t
.

We introduce Γ2(s, t, O) as the set of all pairs (s′, de) for which a
transition from (s, t, O, ν) to (s′, t+de,O, ν+1) is possible. The recursion

48

CHAPTER 2. THE PR-RCPSP

F

t

U(s, t)
O

F

t + de

U(s′, t)
O

s

s′

F
Os#

U(s′, t)

t

OO

O

O

Figure 2.7: A flexible transition from s to s′ at time t.

system for Model 2 can be computed in the same fashion as that of Model 1
except that, in Model 2, we use Γ2(s, t, O) instead of Γ1(s, t, O). We
introduce d2(s → s′, t → t + de,O, ν → ν + 1) as the expected cost until
the end of execution if we decide to transit from (s, t, O, ν) to (s′, t +
de,O, ν + 1) in Model 2 and c2(s, t, O, ν) as the corresponding expected
cost until the end of execution upon leaving each feasible state (s, t, O, ν).

d2(s→ s′, t→ t+ de,O, ν → ν + 1) = wr +
∑

i∈U(s,t)

(
wi(ν+1)|s′i + de− si|

)
+ c2(s′, t+ de,O, ν + 1) (2.6)

Then, the cost associated with the best decision is computed as follows:

(s∗, de∗) ∈ arg min
(s′,de)∈Γ2(s,t,O)

{d2(s→ s′, t→ t+ de,O, ν → ν + 1)} (2.7)

d∗2(s, t, O,ν) = d2(s→ s∗, t→ t+ de∗, O, ν → ν + 1). (2.8)

We introduce the set F2 and I2 as the set of all feasible states and
the set of all infeasible states for Model 2, respectively. Also, the set of

49

2.2. Solution methodology

all endstates and the set of all deadstates are represented by E2 and D2,
respectively. The function c2(s, t, O, ν) is computed as follows:

c2(s,t, O, ν) =
∑

(s,t′,O′,ν)∈F2\E2
π(s, t→ t′, O → O′, ν) ∗ c2(s, t′, O′, ν)

+
∑

(s,t′,O′,ν)∈I2\D2

π(s, t→ t′, O → O′, ν) ∗ d∗2(s, t′, O′, ν)

+
∑

(s,t′,O′,ν)∈D2

π(s, t→ t′, O → O′, ν) ∗M. (2.9)

We select the baseline schedule (sbase) as follows:

sbase ∈ arg min
S∈S

{c2(s, 0, ∅, 0) + wbsn+1}. (2.10)

Model 2 is very similar to Model 1 with only a difference on the valid
reactions.

Let us define a new set Π2 as the set of all PR-policies that can be
constructed using the schedules in S and allowing flexible transitions.
Note that Π1 ⊆ Π2. We introduce problem P2 as follows:

P2 : min
Π∈Π2

|P|∑
l=1

π(p̃ = pl)f(Π, l).

Model 2 (the recursion system (2.6)-(2.10)) optimally solves P2. Since
Π1 ⊆ Π2, Model 2 results in a solution that is at least as good as the
solution provided by Model 1 if started from the same set of schedules.
Although Model 2 searches over a much larger set of PR-policies than
that in Model 1, the two models share the same worst-case computational
complexity. Model 2, however, requires more computational resources
(computational steps and memory requirements) than Model 1.

2.2.2.1 Graph representation of flexible transition

Figure 2.8 depicts the difference in the reaction possibilities of the two
models. Model 1 provides no reacting transition to dissolve the infeasi-
bility in state (s4, 7, {2, 3}, 0) (Figure 2.8(a)) whereas Model 2 provides
a flexible transition (Figure 2.8(b)). In the flexible transition between
(s4, 7, {2, 3}, 0) and (s9, 8, {2, 3}, 1), the starting times of the ongoing ac-
tivities (activity 2 and activity 3) in s4 are s4

2 = 1 and s4
3 = 4 and the

starting time of the ongoing activities in s9 are s9
2 = 2 and s9

3 = 5. If
we choose de = 1, then the first condition is met. U(s4, 7) = U(s9, 8)

50

CHAPTER 2. THE PR-RCPSP

s4, 7, {2, 3}, 0
1000

(a) Model 1

(s4, 7, {2, 3}, 0)

105.00

(s9, 8, {2, 3}, 1)

0.00

(s9, 9, ∅, 1)

0.00

(s9, 9, {2}, 1)

0.00

105 0.71

0.29

(b) Model 2

Figure 2.8: Difference between Model 1 and Model 2.

satisfies the second condition and the fact that time 7 + de = 7 + 1 = 8 is
not a decision moment in s9 fulfills the last condition. Thus this flexible
transition is valid.

2.2.2.2 Enhancement by introducing base states

We introduce base states as follows. A base state which is denoted by
(s, t, O) includes all “child” states (s, t, O, ν) with ν ≥ 0. All states within
a base state are called siblings. The decision arcs and the chance arcs that
are leaving a state are very similar to those of its siblings. For instance,
consider the two states (s, t, O, ν) and (s, t, O, ν + 1). Assume that the
two chance arcs (s, t → t′, O → O′, ν) with probability of occurrence
0.4 and (s, t → t′, O → O′′, ν) with probability of occurrence 0.6 are
leaving the state (s, t, O, ν). Likewise, the two chance arcs (s, t→ t′, O →
O′, ν+1) with probability of occurrence 0.4 and (s, t→ t′, O → O′′, ν+1)
with probability of occurrence 0.6 are leaving the state (s, t, O, ν + 1).
Also, duplicated decision arcs leave infeasible siblings. In order to reduce
computational resources needed to solve the problem, we only compute
and store chance arcs and/or decision arcs for the base state and use them
in computing the expected costs associated with its child states.

Moreover, we can enhance the algorithm even further for the special
case where wik = wi,k+1, ∀i ∈ N, k ≥ 0. If so, then the cost of each state
within a certain base state equals the cost of any of its siblings. In other

51

2.2. Solution methodology

words, we have

c2(s, t, O, 0) = c2(s, t, O, 1) = c2(s, t, O, 2) = (2.11)

Once a cost of a state is known, we can use its cost for all of its siblings.
Therefore, the algorithm requires much less computational resources.

2.2.3 Model 3

Even though Model 2 is meant to reduce the number of deadstates, compu-
tational results show that there are still reasonable amounts of deadstates
in the resulting network of Model 2, which raises serious questions on the
effectiveness of Model 2. In this section, we introduce Model 3 whose
network is proven to be deadstate-free.

2.2.3.1 State representation

We introduce a new state representation for Model 3: states are defined
by (cu, co, de, ν). A cu (an abbreviation of a project cut) indicates the
execution situation of the project at a certain decision moment and is
defined by the trio (F,O,%) where F denotes the set of finished activities,
O represents the set of ongoing activities and % represents the vector of
elapsed times of the ongoing activities. The elapsed time of an activity is
the time passed since the starting of that activity. A co (an abbreviation
of a continuation) indicates the starting times of the remainder of the
project at a certain decision moment and is defined by the pair (U,ρ)
where U denotes the set of not yet started activities and ρ represents the
relative starting times of the not yet started activities. If the starting time
of an activity i is si and the continuation starts at time t, then the relative
starting time of activity i for this continuation will be si − t. The value
de ≥ 0 determines the delay between the moment of the cut and the start
of the continuation. Each state (s, t, O, ν) in Model 1 (or Model 2) can be
linearly mapped to its corresponding state (cu, co, de, ν) in Model 3. To
explain how this mapping is done, we provide an example:

Example. Figure 2.9 shows how to convert state (s7, 7, {6}, 0) of Model 1
to its corresponding state (cu(s7,7,{6}), co(s7,7), 0, 0) of Model 3 where

cu(s7,7,{6}) = ({1, 3, 4}, {6}, (∗, ∗, ∗, ∗, ∗, ∗, 2, ∗, ∗, ∗)) and

co(s7,7) = ({2, 5, 7, 8, 9}, (∗, ∗, 0, ∗, ∗, 0, ∗, 7, 10, 12)).

52

CHAPTER 2. THE PR-RCPSP

8

30%

1 5 10 15

1

7
50%

5
80%

3

4
6

60%

2
50%

20%

𝑡 = 7 𝑠9
7

8

4

continuation = (𝑈, 𝝆)cut = (𝐹, 𝑂, 𝝔)

𝑐𝑢(𝒔7 ,7, 6) = 1,3,4 , 6 , ∗,∗,∗,∗,∗,∗, 2,∗,∗,∗

𝑐𝑜(𝒔7 ,7) = ({2,5,7,8,9}, (∗,∗, 0,∗,∗, 0,∗, 7,10,12))

Model 3 state: (𝑐𝑢(𝒔7 ,7,{6}), 𝑐𝑜(𝒔7 ,7), 0,0)

Model 1 state: (𝒔7 , 7, {6}, 0)

Figure 2.9: An example of a cut and a continuation.

Readers should beware that, in our examples, instead of using numerical
indices for cuts and continuations (e.g., cu1 and co1), we use parametric
combination (s, t, O) as the index of a cut (e.g., cu(s7,7,{6})) and para-
metric combination (s, t) as the index of a continuation (e.g., cu(s7,7)).
This parametric indexing approach provides much more information to
the reader than a numerical indexing approach. However, readers must
note that a single unique cut (or a single unique continuation) can be
represented by different parametric combinations. For instance, the cut
({0}, {1, 4}, (∗, 1, ∗, ∗, 1, ∗, ∗, ∗, ∗, ∗)) can be represented by both cu(s1,1,{1,4})
and cu(s2,1,{1,4}).

2.2.3.2 Transitions

Let J(co, t) be the set of activities that start t time units after the start
of the continuation (J(co, t) = {i ∈ U |ρi = t}). A state (cu, co, de, ν)
is feasible if either de > 0 or scheduling the activities in the set J(co, 0)
while the activities in O are ongoing is resource and precedence feasible.
Remind that, if de > 0 then there is a positive gap between the moment
of the cut and the start of the continuation and thus it is guaranteed that
no activity is started until the next decision moment.

If (cu, co, de, ν) is a feasible state, then a set of chance arcs leave
this state. On one hand, if de > 0, then there exist chance arcs (cu →
cu′, co, de→ 0, ν) with cu = (F,O,%) and cu′ = (F ′, O′,%′) such that

53

2.2. Solution methodology

• F ⊆ F ′, O′ ⊆ O and F ∪O = F ′ ∪O′,
• if i ∈ O \O′, then de+ %i ≥ pmin

i ,

• if i ∈ O ∩O′, then %′i = de+ %i ≤ pmax
i .

The probability of occurrence of each chance arc (cu→ cu′, co, de→ 0, ν)
is computed as follows:

π(cu→ cu′, co, de→ 0, ν) =
∏

i∈O∩O′

π(p̃i > de+ %i)

π(p̃i > %i)

×
∏

i∈O\O′

(
1− π(p̃i > de+ %i)

π(p̃i > %i)

)
.

On the other hand, if de = 0 in a feasible state (cu, co, de, ν), then there
exists a set of chance arcs (cu → cu′, co → co′, 0, ν) with cu = (F,O,%),
cu′ = (F ′, O′,%′), co = (U,ρ) and co′ = (U ′,ρ′) = coC tnext such that

• F ⊆ F ′ and O′ ⊆ O ∪ J(co, 0),

• if i ∈ O \O′, then tnext + %i ≥ pmin
i ,

• if i ∈ O′ ∩O, then %′i = tnext + %i ≤ pmax
i ,

• if i ∈ J(co, 0) ∩O′, then %′i = tnext ≤ pmax
i ,

• if i ∈ J(co, 0) \O′, then tnext ≥ pmin
i .

where tnext = min{ρi > 0|i ∈ U} and C is a left-shift operator. This
operator left-shifts each activity in a continuation by a constant value
and removes any activity that cannot be left-shifted. The probability of
occurrence of the chance arc (cu → cu′, co → co′, 0, ν) is computed as
follows:

π(cu→ cu′, co→ co′, 0, ν) =
∏

i∈O∩O′

π(p̃i > tnext + %i)

π(p̃i > %i)

×
∏

i∈J(co,0)∩O′
π(p̃i > tnext)×

∏
i∈O\O′

(
1− π(p̃i > tnext + %i)

π(p̃i > %i)

)
×

∏
i∈J(co,0)\O′

(1− π(p̃i > tnext)).

An example might help to clarify the above formulations:

54

CHAPTER 2. THE PR-RCPSP

Example. Consider state (cu(s7,6,{6}), co(s7,7), 1, 0). This state is a fea-
sible state since de = 1. There is only one chance arc leaving this state
which is (cu(s7,6,{6}) → cu(s7,7,{6}), co(s7,7), 1 → 0, ν). The probability of
occurrence of this chance arc is computed as follows (note that O \ O′ =
{6} \ {6} = ∅):

π(cu(s7,6,{6}) → cu(s7,7,{6}), co(s7,7), 1→ 0, ν) =
π(p̃6 > 1 + 1)

π(p̃i > 1)
= 1.

Now consider state (cu(s7,7,{6}), co(s7,7), 0, 0) (see Figure 2.9). It is re-
source and precedence feasible to schedule the activities in J(co(s7,7), 0) =
{2, 5} while activity 6 is ongoing and thus the state is feasible. In s7, the
next decision moment after 7 is 14. Since the schedule is feasible and no
reaction is needed, the continuation at the next decision moment will be
co(s7,7) C 7 = co(s7,14) (in general, co(s,t) C x = co(s,t+x) always holds).
The detailed computations of this left shift are given below:

co(s7,7) C 7 = ({2, 5, 7, 8, 9}, (∗, ∗, 0, ∗, ∗, 0, ∗, 7, 10, 12)) C 7

= ({7, 8, 9}, (∗, ∗, ∗, ∗, ∗, ∗, ∗, 0, 3, 5)) = co(s7,14).

In this example, activities 2 and 5 are removed because they cannot be left-
shifted. The following four chance arcs leave state (cu(s7,7,{6}), co(s7,7), 0, 0):

• (cu(s7,7,{6}) → cu(s7,14,∅), co(s7,7) → co(s7,14), 0, 0) with a probability
of occurrence of 0.16,

• (cu(s7,7,{6}) → cu(s7,14,{2}), co(s7,7) → co(s7,14), 0, 0) with a probabil-
ity of occurrence of 0.04,

• (cu(s7,7,{6}) → cu(s7,14,{5}), co(s7,7) → co(s7,14), 0, 0) with a probabil-
ity of occurrence of 0.64,

• (cu(s7,7,{6}) → cu(s7,14,{2,5}), co(s7,7) → co(s7,14), 0, 0) with a proba-
bility of occurrence of 0.16.

A transition (decision arc) between (cu, co, 0, ν) and (cu, co′, de′, ν+1)
that is shown by (cu, co → co′, 0 → de′, ν → ν + 1) is valid only if the
former state is infeasible and the latter one is feasible. The cost of this
transition, which is referred to as a cut transition, equals:

wr +
∑
i∈U

(
wi(ν+1)|ρi − (de′ + ρ′i)|

)
.

The set of all cut transitions also includes all normal and flexible tran-
sitions. For each infeasible state (cu, co, 0, ν) (remind that any state

55

2.2. Solution methodology

s7, 14, {2, 5}, 2
1000

(a) Model 2: no reaction possibility to resolve the infeasibility in state
(s7, 14, {2, 5}, 2)

cu(s7,14,{2,5}), co(s7,14), 0, 2

106.90

cu(s7,14,{2,5}), co(s7,14), 1, 3

46.90

cu(s7,14,{2,5}), co(s4,8), 1, 3

cu(s7,14,{2,5}), co(s2,8), 1, 3

cu(s7,14,{2,5}), co(s1,7), 1, 3

17.40

cu(s7,14,{2,5}), co(s8,12), 1, 3

19.20

cu(s7,14,{2,5}), co(s10,15), 1, 3

60

99

98

138

137

177

(b) Model 3: cut transitions that resolve the infeasibility in state
(cu(s7,14,{2,5}), co(s7,14), 0, 2)

Figure 2.10: The difference in reaction possibilities between Model 2 and
Model 3.

(cu, co, de, ν) with de ≥ 1 is certainly feasible), we introduce Γ3(cu, co)
that represents the set of all pairs (co′, de′) for which a cut transition
from (cu, co, 0, ν) to (cu, co′, de′, ν + 1) exists. Note that from each in-
feasible state (cu, co, 0, ν), there is at least one valid cut transition to
state (cu, co, 1, ν + 1), and therefore it is guaranteed that the network in
Model 3 is deadstate-free. Some experiments show that such a network
might explode. Therefore, we enforce de′ ≤ 1 in our experiments.

Example. Consider state (s7, 14, {2, 5}, 2) in Model 2 and its associ-
ated state (cu(s7,14,{2,5}), co(s7,14), 0, 2) in Model 3. Figure 2.10(a) depicts
state (s7, 14, {2, 5}, 2) which is a deadstate in Model 2. While Model 2
fails to resolve the infeasibility in state (s7, 14, {2, 5}, 2), Model 3 pro-
poses six different possible cut transitions to resolve the infeasibility in
(cu(s7,14,{2,5}), co(s7,14), 0, 2) (see Figure 2.10(b)). Notice that three of

56

CHAPTER 2. THE PR-RCPSP

these transitions (indicated by dashed lines) are simply too costly and
therefore are dominated by the dominance rule that will be introduced in
Section 2.2.3.4.

2.2.3.3 Dynamic programming recursion

First, we compute the cost until the end of the execution for each decision
arc:

d3(cu, co→ co′, 0→ de′, ν → ν + 1) = wr+ (2.12)∑
i∈U

(
wi(ν+1)|ρi − (de′ + ρ′i)|

)
+ c3(cu, co′, de′, ν + 1).

Then, the cost associated with the best decision is computed as follows:

(co∗, de∗) ∈ arg min
(co′,de′)∈Γ3(cu,co)

{d3(cu, co→ co′, 0→ de′, ν → ν + 1)}

(2.13)

d∗3(cu, co, 0,ν) = d3(cu, co→ co∗, 0→ de∗, ν → ν + 1). (2.14)

We introduce the set F3, I3 and E3 as the set of all feasible states,
the set of all infeasible states and the set of all endstates in Model 3,
respectively. The function c3(cu, co, de, ν) is computed as follows:

c3(cu, co, de, ν) = (2.15)∑
(cu′,co′,de′,ν)∈F3\E3

π(cu→ cu′, co→ co′, de→ de′, ν) ∗ c3(cu′, co′, de′, ν)

+
∑

(cu′,co′,0,ν)∈I3

π(cu→ cu′, co→ co′, de→ 0, ν) ∗ d∗3(cu′, co′, 0, ν).

Similarly to the previous models, we need to select one of the schedules
in S as the baseline schedule. Let us introduce cu0 = (∅, ∅, ()). We select
the baseline schedule (sbase) as follows:

sbase ∈ arg min
s∈S

{c3(cu0, co(s,0), 0, 0) + wbsn+1}. (2.16)

Let us define the set Π3 as the set of all PR-policies that can be
constructed using the schedules in S and allowing cut transitions. Note
that Π1 ⊆ Π2 ⊆ Π3. We introduce problem P3 as follows:

P3 : min
Π∈Π3

|P|∑
l=1

π(p̃ = pl)f(Π, l).

57

2.2. Solution methodology

The recursion system (2.12)-(2.16) optimally solves P3 and the optimal
objective value equals c3(cu0, co(sbase,0), 0, 0) + wbs

base
n+1. Because Π1 ⊆

Π2 ⊆ Π3, Model 3 provides a solution that is at least as good as the
solution provided by Model 2 or Model 1 for the same set of starting
schedules.

In Model 3, we need to generate all possible continuations before start-
ing the recursion. In order to avoid duplicates, for each continuation we
make sure that the smallest relative starting time of an activity is zero,
otherwise, we left-shift that continuation until this condition is fulfilled.
For example, if co = ({1, 2, 3}, (2, 5, 7)), then we left-shift co by two units
(co = coC 2) and therefore we will have co = ({1, 2, 3}, (0, 3, 5)).

2.2.3.4 Improvement by removing dominated decision arcs

In Model 3, many cut transitions are possible. Thus, plenty of decision
arcs are leaving each state. However, many of these decision arcs are
very costly to choose and hence will never be part of an optimal solution.
Let LB(c3(cu, co, de, ν)) be a valid lower bound for c3(cu, co, de, ν). The
following dominance rule removes those decision arcs that are too costly
such that they can be dominated by at least one other decision arc.

Dominance rule 2.1. Assume that one has partially computed the cost of
an infeasible state (cu, co, 0, ν). That means he/she has already computed
the expected costs until the end for some (but not all) of the decision arcs.

Let (ĉo, d̂e) be the best decision so far for this infeasible state. For each
remaining decision (co′, de′), if

wr +
∑
i∈U

(
wi(ν+1)|ρi − (de′ + ρ′i)|

)
+ LB(c3(cu, co′, de′, ν + 1))

≥ d3(cu, co→ ĉo, 0→ d̂e, ν → ν + 1),

then (co′, de′) is certainly not the best decision for (cu, co, de, ν) and its
corresponding arc (cu, co→ co′, 0→ de′, ν → ν + 1) can be eliminated.

To support the above dominance rule, it suffices to remind (2.12) and

argue that the transition from (cu, co, 0, ν) to (cu, ĉo, d̂e, ν + 1) is at least
as good as the transition from (cu, co, 0, ν) to (cu, co′, de′, ν + 1).

Although Dominance rule 2.1 can be a powerful dominance rule, com-
puting a valid LB(c3(cu, co′, de′, ν + 1)) seems to be a big obstacle. Nev-
ertheless, we simply assume that LB(c3(cu, co′, de′, ν + 1)) = 0. Despite
being naive, a considerably large number of decision arcs are eliminated

58

CHAPTER 2. THE PR-RCPSP

by Dominance rule 2.1 where LB(c3(cu, co′, de′, ν+1)) = 0. The following
example provides a better understanding of the above dominance rule.

Example. Consider the decision arcs in Figure 2.10(b). The expected
cost until the end of the execution for decision arc (cu(s7,14,{2,5}), co(s7,14) →
co(s1,7), 0→ 1, 2→ 3) is 99 + 17.40 = 116.40 which is already lower than
the cost of the transition from state (cu(s7,14,{2,5}), co(s7,14), 0, 2) to state
(cu(s7,14,{2,5}), co(s2,8), 1, 3). Thus, decision arc (cu(s7,14,{2,5}), co(s7,14) →
co(s2,8), 0→ 1, 2→ 3) is dominated.

In Section 2.4.2, we provide an approach to compute better lower
bounds that are valid when certain conditions are met (i.e., when non-
conflict-based transitions are allowed). However, the verification of the
correctness of the lower bound obtained using this approach, specially
when ‘non-conflict-based’ transitions are not allowed, will be a topic of
future research.

2.2.4 Model 4

As we already mentioned in Section 2.2.3, many very costly decision arcs
exist in Model 3 and only some of them can be dominated by Dominance
rule 2.1. We introduce Model 4 which is very similar to Model 3 with the
only difference that the decisions are generated in a much smarter fashion.

For each combination of (cu, co, de), which represents an infeasible
schedule, we compute a number of continuations using RP-SGS (note that
preliminary results suggest that RP-SGS generally outperforms robust
serial SGS (RS-SGS)) with different lists (earliest baseline starting time
(EBST) and lowest activity number (LAN)) and different sets of durations
(p50%, p60%, p70% and p80%) where px% is computed as follows:

px% = (px%
0 , px%

1 , ..., px%
n+1) where

px%
i = min{pi|pmin

i ≤ pi ≤ pmax
i , π(p̃i ≤ pi) ≥ x%}.

Note that px%
i is the x

100 -fractile of the distribution of p̃i.

For each different choice of a reaction policy, a set of durations and
a list, we possibly end up in a different continuation. To avoid dupli-
cations we ensure that the smallest relative starting time of an activity
is zero, otherwise we left-shift that continuation until this condition is

The concept of non-conflict-based transitions is explained in Section 2.4.1.

59

2.2. Solution methodology

fulfilled. For each combination of (cu, co), the above computations pro-
vide the set of possible reactions (Γ4(cu, co)) with at most 8 different
pairs (co′, de′). Each pair (co′, de′) represents a wise transition. In com-
parison with Γ3(cu, co) (which is the set of possible reactions in Model 3),
this set includes a much smaller number of pairs. However, the quality of
the pairs in Γ4(cu, co) is, on average, meant to be much better than that
of those in Γ3(cu, co).

The recursion system of Model 4 can be computed in the same fashion
as that of Model 3 except that, in Model 4, we use Γ4(cu, co) instead of
Γ3(cu, co). We compute the cost until the end of the execution for each
decision arc:

d4(cu, co→ co′, 0→ de′, ν → ν + 1) = wr+ (2.17)∑
i∈U

(
wi(ν+1)|ρi − (de′ + ρ′i)|

)
+ c4(cu, co′, de′, ν + 1).

The cost associated with the best decision is computed as follows:

(co∗, de∗) ∈ arg min
(co′,de′)∈Γ4(cu,co)

{d4(cu, co→ co′, 0→ de′, ν → ν + 1)}

(2.18)

d∗4(cu, co, 0,ν) = d4(cu, co→ co∗, 0→ de∗, ν → ν + 1). (2.19)

We introduce the set F4, I4 and E4 as the set of all feasible states,
the set of all infeasible states and the set of all endstates in Model 4,
respectively. The function c4(cu, co, de, ν) is computed as follows:

c4(cu, co, de, ν) = (2.20)∑
(cu′,co′,de′,ν)∈F4\E4

π(cu→ cu′, co→ co′, de→ de′, ν) ∗ c4(cu′, co′, de′, ν)

+
∑

(cu′,co′,0,ν)∈I4

π(cu→ cu′, co→ co′, de→ 0, ν) ∗ d∗4(cu′, co′, 0, ν).

We select the baseline schedule (sbase) as follows:

sbase ∈ arg min
s∈S

{c4(cu0, co(s,0), 0, 0) + wbsn+1}. (2.21)

Let us define a new set Π4 as the set of all PR-policies that can be
constructed using the baseline schedules in s and allowing wise transitions.
It should be noted that Π4 6⊆ Π3. We introduce problem P4 as follows:

P4 : min
Π∈Π4

|P|∑
l=1

π(p̃ = pl)f(Π, l).

60

CHAPTER 2. THE PR-RCPSP

Model 4 (the recursion system (2.17)-(2.21)) optimally solves P4.

2.3 Computational results

All models (Models 1-4) have been implemented in Visual C++ 2010.
All computational results, unless stated otherwise, were obtained on a
laptop Dell Latitude with 2.6 GHz Core(TM) i7-3720QM processor, 8GB
of RAM and running under Windows 10.

2.3.1 Instance generation

Our models are tested on a set of 48 instances that are composed of
PSPLIB instances. Only instances with 30 non-dummy activities are con-
sidered in this experiment. PSPLIB is a class of instances for the de-
terministic RCPSP (Kolisch and Sprecher, 1997), thus they need to be
modified to suit our problem. The following modifications are applied on
this set of instances: the activity duration p̃i for non-dummy activity i
follows a discretized beta distribution with shape parameters 2 and 5 that
is mapped over the interval [0.75p̂i, 1.625p̂i] where p̂i is the duration of
activity i that is given in the original instance.

The base activity weights wj0 for j ∈ {1, 2, ..., n} are obtained from
a discrete triangular distribution with Pr(wj = q) = (21 − 2q)% for
q ∈ {1, 2...10}. This distribution results in a higher probability for low
weights. The average weight wavg then equals 3.85 which is used to cal-
culate the weight of the dummy end activity wn+1,0 = 38 ≈ 10wavg. The
non-base activity weights are computed as follows: wjk = λkwj0; k =
1, . . . , 30. The value of λ is chosen from {1, 1.1, 1.2}.

In order to reduce the number of experiments, we only consider the
instances from the set J30 of PSPLIB with the following filename syntax:
J30X 1 (X = 1, ..., 48).

2.3.2 Measures of stability and robustness

In this section, we introduce and discuss two measures that are used as
comparison measures:

61

2.3. Computational results

• Combined cost (CC): the expected proactive and reactive cost for
each PR-policy Π which is computed as follows:

|P|∑
l=1

π(p̃ = pl)f(Π, l).

• Recovery robustness (RR): the probability of not having a deadend
which is computed by:

|P|∑
l=1

π(p̃ = pl)(1− γΠ,l).

2.3.3 Results for our proposed models

In this section, we discuss the results of our four proposed models. For
each model, we report the average CPU time (in seconds) required to
solve the problem (CPU), the average combined cost (CC), the average
recovery robustness (RR) and the average number of states (#states).
For Models 1 and 2 we also report the average number of chance arcs
(#c arcs) and the average number of decision arcs (#d arcs), whereas for
Models 3 and 4 we report the average number of cuts (#cuts) and the
average number of continuations (#cons).

2.3.3.1 Model 1

We run Model 1 on the set of instances explained above and over the nine
different sets of schedules. These nine different sets are constructed using
three different initial sets of schedules and three different values for κ1.
For this experiment, we choose wb = 50, λ = 1, wr = 100 and M = 1000.

Table 2.3 depicts an overview of the results obtained for Model 1 on
the nine different sets of schedules. Note that in order to reduce the space
required to store all arcs, states with the same s, t and O are grouped
into bigger states (called base state) and then arcs are only added among
base states. Therefore, it might be possible that the number of states is
greater than the number of chance arcs and/or the number of decision
arcs.

There are improving trends in both combined cost and recovery ro-
bustness by increasing the size of the set of schedules. The only exception
is when we generate schedules using DET. In this case, the combined cost

62

CHAPTER 2. THE PR-RCPSP

Sinit κ1 CPU CC RR #states #c arcs #d arcs

DET
500 1.06 4034.94 0.07 236561 105149 260149
1000 2.97 4040.95 0.09 519700 217163 1027909
2000 9.24 4038.69 0.15 1139451 448983 4073017

STC
500 20.96 3946.84 0.42 217502 104098 219300
1000 24.17 3934.67 0.48 485080 213790 882217
2000 29.37 3919.82 0.53 1064437 440083 3563275

SMP
500 5.69 4011.25 0.38 273222 106733 223245
1000 7.09 3988.70 0.41 595881 220948 886837
2000 13.38 3957.46 0.47 1296020 456841 3533487

Table 2.3: Summary of the results for Model 1.

is fluctuating while the recovery robustness is improved by increasing the
size of the set of schedules. This behavior is considered to be strange
because more schedules results in more reaction possibilities and smaller
numbers of deadends and thus it is expected that the combined cost is
decreased. This strange behavior is possible when the expected cost im-
posed by the added reaction possibilities (when we use the larger set of
schedules) is larger than the expected cost imposed by the deadends (when
we use the smaller set of schedules). For example, when we use DET to
generate 500 schedules, recovery robustness is around 0.07. When we use
DET to generate 1000 schedules, recovery robustness is around 0.09 which
means that the probability of having a deadend when we generate 1000
schedules is around 2% less than that when we only generate 500 sched-
ules. This means that in 2% of the cases, instead of paying M which is the
cost of the deadends, we must pay the costs of reactions. So, whenever
the expected cost of these reactions is higher than the expected cost of
deadends (i.e., 1000× 0.02 = 20), this strange behavior occurs.

Also, we notice that both combined cost and recovery robustness sig-
nificantly improve, while CPU time increases, by using STC or SMP in-
stead of DET as the initial set of schedules. On average, it takes around
20 seconds to generate 13 schedules in the set STC and around 4.5 seconds
to generate 50 schedules in SMP. Finally, we observe that as we increase
the number of schedules, the number of states and the number of chance
arcs are linearly increased whereas the increase in the number of decision
arcs is rather quadratic.

63

2.3. Computational results

Sinit κ1 CPU CC RR #states #c arcs #d arcs

DET
500 0.87 3739.34 0.80 61347 135441 1123350
1000 2.38 3686.56 0.88 126631 284889 4606344
2000 8.76 3645.05 0.91 260473 596044 18841063

STC
500 20.52 3696.72 0.86 64640 143110 1058972
1000 22.05 3641.85 0.91 133056 299560 4317168
2000 27.19 3607.48 0.94 273195 625034 17593573

SMP
500 5.42 3696.85 0.89 71156 167705 987363
1000 6.67 3649.07 0.92 146259 349139 3974585
2000 11.39 3614.29 0.94 300199 722934 15943784

Table 2.4: Summary of the results for Model 2.

2.3.3.2 Model 2

The summary of the results obtained for Model 2 are reported in Ta-
ble 2.4. For this experiment, similarly to Model 1, we choose wb = 50,
λ = 1, wr = 100 and M = 1000. Obviously, Model 2 outperforms Model 1
in both combined cost and recovery robustness. Although Model 2 runs
faster than Model 1 when λ = 1 which is mainly a result of the enhance-
ment techniques explained in Section 2.2.2.2, it needs more computational
resources (both computation steps and memory requirements) than those
needed for Model 1 to solve the problem. Similarly to Model 1, increas-
ing the size of the set of schedules and/or switching from DET to either
STC or SMP result in both better combined cost and better recovery
robustness. We notice that in spite of a huge improvement in recovery
robustness (solutions with on average 80-95% recovery robustness), we
fail to find fully recovery-robust solutions (solutions with 100% recovery
robustness) for any of the instances.

The numbers of states in Model 2 are much smaller than those of
Model 1 because in Model 2 we use base states to reduce the computa-
tional resources as explained in Section 2.2.2.2. However, if λ 6= 1, then
the numbers of states in Model 2 would have been larger than those in
Model 1. Unlike the numbers of states, the numbers of arcs in Model 2
are larger than the numbers of arcs in Model 1. Even though the numbers
of chance arcs haven’t increased much in comparison with Model 1, the
increase in the numbers of decision arcs is quite significant.

64

CHAPTER 2. THE PR-RCPSP

Sinit κ1 CPU CC RR #states #cuts #cons

DET
500 177.21 3589.07 1.00 2740331 12337 5278
1000 736.04 3576.22 1.00 5781750 14886 10040
2000 - - - - - -

STC
500 244.45 3562.03 1.00 3663497 17378 6179
1000 1029.93 3549.13 1.00 7978517 21270 11643
2000 - - - - - -

SMP
500 180.58 3566.60 1.00 3887518 30545 6016
1000 790.71 3555.25 1.00 8587042 38190 11483
2000 - - - - - -

Table 2.5: Summary of the results for Model 3.

2.3.3.3 Model 3

The summary of the results obtained for Model 3 are reported in Table 2.5.
For this experiment, similarly to Model 1 and Model 2, we choose wb = 50,
λ = 1, wr = 100 and M = 1000. In Model 3, by definition all solutions
must be fully recovery robust, which is also confirmed in the results. Apart
from having fully recoverable robust solutions, Model 3 also provides much
cheaper solutions. The improvement on the combined cost is significant
if we choose Model 3 instead of Model 2. But these improvements come
at a cost. The computational resources needed to solve Model 3 are much
higher than those needed for Model 2. For instance, the number of states
required to solve Model 3 over the set of 500 schedules constructed by
Sinit = DET for the given setting is around 45 times the number of
states required to solve Model 2 over the same set of schedules. Also, the
CPU time required to solve Model 3 is much higher than that required to
solve Model 2. When κ1 = 2000, often more computational resources are
needed than available and thus many instances cannot be solved.

2.3.3.4 Model 4

The summary of the results obtained for Model 4 are reported in Ta-
ble 2.6. For this experiment, similarly to Model 1, Model 2 and Model 3,
we choose wb = 50, λ = 1, wr = 100 and M = 1000. Model 4 requires
a huge amount of memory because the number of cuts and the number
of continuations are much larger than those in Model 3. Therefore, we
stop Model 4 if we reach a certain number of states. In this experiment,
we stop Model 4 if we reach 40 million states. In our implementation

65

2.3. Computational results

Sinit κ1 #solved CPU CC #states #cuts #cons

DET
500 43 167.59 3580.87 10158884 35051 500063
1000 43 212.46 3572.01 12566521 35738 597405
2000 39 268.05 3565.42 15700267 36080 734225

STC
500 41 190.16 3552.42 10386517 34090 518785
1000 41 220.60 3544.55 12257837 34432 606361
2000 40 273.30 3539.53 15149351 34849 743418

SMP
500 36 340.14 3558.44 19269453 84722 901571
1000 32 380.09 3554.22 22111245 85310 1013003
2000 28 437.62 3549.38 25398410 85863 1158909

Table 2.6: Summary of the results for Model 4.

Model 4 first computes c4(cu0, cos1

, 0, 0), then c4(cu0, cos2

, 0, 0), and con-

tinues so until it computes c4(cu0, cos|S| , 0, 0) as the last state. For a
certain instance, if before reaching the limit of 40 million states, Model 4

computes c4(cu0, cos|S| , 0, 0), then that instance is consider as solved oth-
erwise Model 4 outputs the best c4(cu0, cos, 0, 0) + wbsn+1 among those
computed so far.

In Model 4, similarly to Model 3, we aim to find solutions with full
recovery robustness, which is also confirmed in the results. Model 4 also
provides much cheaper solutions in comparison with all other models. The
improvement on the combined cost is significant if we choose Model 4
instead of any other model. But these improvements come with a large
increase of the number of states, the number of cuts and the number
of continuations. For instance, the number of states required to solve
Model 4 over the set of 500 schedules is around 5 times the number of
states required to solve Model 3 over the same set of schedules. However,
as we increase the number of schedules from 500 to 1000, the numbers of
states in Model 3 are approximately increased by a factor of more than 2
whereas the number of states in Model 4 are approximately increased by a
factor of only 1.2. The average CPU time required to solve Model 4 is less
than that of Model 3 because, unlike Model 3 which has many dominated
decision arcs, Model 4 is not likely to have many dominated arcs.

66

CHAPTER 2. THE PR-RCPSP

2.3.4 Comparison with a conventional proactive and
reactive method

We compare Models 2-4 with a combination of conventional proactive
and reactive approaches (the reason that we leave out Model 1 in these
comparisons is that it performs much worse than the other two models).
As a proactive approach we choose a modified version of the STC method
(M-STC) which is introduced in Section 2.3.4.1 and as a reactive approach
we choose RP-SGS where EBST is the scheme’s priority rule. We refer to
this combination as CONV.

2.3.4.1 Modified-STC (M-STC)

The original STC method introduced by Van de Vonder et al. (2008)
produces a reasonably robust baseline schedule whose makespan is not
larger than α × makespan where makespan is the project completion
time of the optimal schedule for the deterministic RCPSP. Remember
that the notation α is borrowed from the notation system in Van de
Vonder et al. (2008) and as such must not be confused with (1− α) that
denotes the confidence level in Chapter 4. Given different values for α,
STC produces different schedules, some being very tight (1 ≤ α < 1.15),
some being very loose (α ≥ 1.3) and some being neither tight nor loose
(1.15 ≤ α < 1.3). Depending on what values we choose for wb, wr and λ, it
might be beneficial to have a loose or tight baseline schedule. It is indeed
very difficult to incorporate wr and λ in the computation of the stability
cost exploited in the STC method, but it is possible to incorporate wb in
the computation of this cost.

The function stc(i) represents the stability cost of activity i in the
original method introduced by Van de Vonder et al. (2008). Let us intro-
duce the function ŝtc(i) as the Modified stability cost of activity i. We
compute ŝtc(i) as follows:

ŝtc(i) = stc(i) if i 6= n+ 1 and

ŝtc(n+ 1) = stc(n+ 1) + wbsn+1.

All steps in our modified STC method are exactly the same as in the
original method except that we use

∑
i∈N ŝtc(i) instead of

∑
i∈N stc(i) as

the total stability cost.

67

2.3. Computational results

2.3.4.2 Modified Model 2 (M-Model 2)

Model 2 is not suitable to be compared with any conventional proactive
and reactive solution, since its optimal policies may include deadends.
In the modified version of Model 2, once we reach a deadstate, instead
of incurring a cost of M , we run a very limited simulation to compute
an estimated cost of reactions for the remainder of the execution of the
project. Each simulation only consists of 10 randomly chosen realizations.
During the simulation, all infeasiblities are resolved by RP-SGS where
EBST is the scheme’s priority rule.

2.3.4.3 M-Model 2 vs. CONV

We compare CONV and M-Model 2 where Sinit = SMP and κ1 = 1000.
We apply the following experiment: we run both methods for each com-
bination of parameters (λ,wb, wr, α) where λ = 1, 1.1 or 1.2, wb = 25 or
50, wr = 0, 50, 100 or 200 and α = 1.1, 1.2 or 1.3. To incorporate α in
M-Model 2, we limit the choice of the baseline schedule and replace (2.10)
by

sbase ∈ arg min
s∈Sα

{c2(s, 0, ∅, 0) + wbsn+1}. (2.22)

where Sα = {s ∈ S|sn+1 ≤ α×makespan}
Table 2.7 reports the outcome of this experiment. We notice that M-

Model 2 performs worse than CONV when wr = 0. However, we observe
that by increasing the cost wr, M-Model 2 tends to outperform CONV.
Similarly, by increasing λ, the average percent deviation of M-Model 2
from CONV is also decreased.

2.3.4.4 Model 3 vs. CONV

We compare CONV and Model 3 where Sinit = SMP and κ1 = 1000. We
apply a similar experiment to the one in Section 2.3.4.3 except that we fix
λ = 1. To incorporate α in Model 3, we limit the choice of the baseline
schedule and replace (2.16) by

sbase ∈ arg min
s∈Sα

{c3(cu0, cos, 0, 0) + wbsn+1}. (2.23)

Table 2.8 reports the outcome of this experiment. In terms of average
percent deviation from CONV, Model 3 clearly outperforms M-Model 2.
We notice that Model 3 also performs worse than CONV when wr = 0 and

68

CHAPTER 2. THE PR-RCPSP

wr λ
wb = 25 wb = 50

α = 1.1 α = 1.2 α = 1.3 α = 1.1 α = 1.2 α = 1.3

0
1 4.84 3.79 3.79 2.70 2.62 2.62

1.1 4.69 2.97 2.97 2.66 2.47 2.47
1.2 2.93 0.27 0.27 1.24 0.75 0.75

50
1 0.66 -1.77 -1.77 0.74 0.51 0.51

1.1 0.26 -3.08 -3.08 0.23 -0.27 -0.27
1.2 -1.48 -5.82 -5.83 -1.40 -2.33 -2.33

100
1 -3.85 -7.98 -8.01 -2.06 -2.71 -2.71

1.1 -4.17 -9.15 -9.20 -2.62 -3.66 -3.66
1.2 -5.77 -11.56 -11.64 -4.19 -5.73 -5.73

200
1 -12.20 -18.40 -18.70 -7.93 -9.69 -9.70

1.1 -12.25 -19.18 -19.59 -8.34 -10.60 -10.61
1.2 -13.37 -20.88 -21.36 -9.65 -12.42 -12.44

Table 2.7: Average percent deviation of M-Model 2 from CONV for different
values of parameters λ,wb, wr and α.

wr
wb = 25 wb = 50

α = 1.1 α = 1.2 α = 1.3 α = 1.1 α = 1.2 α = 1.3
0 2.13 1.80 1.80 0.41 0.36 0.36
50 -1.08 -2.90 -2.90 -0.34 -0.51 -0.51
100 -5.24 -9.36 -9.42 -2.84 -3.42 -3.42
200 -13.60 -20.26 -20.71 -8.46 -10.14 -10.15

Table 2.8: Average percent deviation of Model 3 from CONV for different
values of parameters wb, wr and α and fixed value of parameter
λ = 1.

performs better than CONV when wr > 0. We must acknowledge that
although Model 3 outperforms M-Model 2 in all settings and CONV in
most of the settings, it also requires much more computational resources
than both M-Model 2 and CONV, specially when λ 6= 1.

2.3.4.5 Model 4 vs. CONV

Similarly to the previous comparisons, we compare CONV and Model 4
where Sinit = SMP and κ1 = 1000. We stop the algorithm of Model 4 if
it reaches 200 million states (which requires around 25 GB of memory to
store the states and the arcs). Due to a lack of memory in the laptop ma-

69

2.4. Discussion

wr
wb = 25 wb = 50

α = 1.1 α = 1.2 α = 1.3 α = 1.1 α = 1.2 α = 1.3
0 0.33 0.19 0.19 -0.47 -0.52 -0.52
50 -2.36 -3.96 -3.96 -0.91 -1.08 -1.08
100 -5.85 -10.11 -10.20 -3.11 -3.77 -3.77
200 -13.28 -20.47 -21.05 -8.52 -10.73 -10.75

Table 2.9: Average percent deviation of Model 4 from CONV for different
values of parameters wb, wr and α and fixed value of parameter
λ = 1.

chine, the computational results in this section were obtained on a server
machine with Intel Xeon CPU E5-2699 2.3 GHz (2 processors), 256GB of
RAM and running under Windows server 2012 R2. To incorporate α in
Model 4, we limit the choice of the baseline schedule and replace (2.21)
by

sbase ∈ arg min
s∈Sα

{c4(cu0, cos, 0, 0) + wbsn+1}. (2.24)

Table 2.9 reports the outcome of this experiment. In terms of av-
erage percent deviation from CONV, Model 4 clearly outperforms both
M-Model 2 and Model 3. Model 4 performs slightly worse than CONV
when wr = 0 and wb = 25 and performs better elsewhere, specially when
wr ≥ 50. From a theoretical point of view, Model 4 must outperform
CONV if S contains the baseline schedules that are used in CONV (which
is the case when Sinit = STC). However, in this experiment, we construct
Sinit using our sampling approach (SMP) and thus the fact that CONV
outperforms Model 4 when wr = 0 and wb = 25 can be justified.

2.4 Discussion

2.4.1 Non-conflict-based PR-policies

It might be wrongfully perceived that reactions are only necessary when
conflicts occur. On the contrary, we find that reactions can be beneficial
even if no conflict occurs. Upon entering a feasible state, some information
becomes available that can be used to predict a conflict in the (near)
future. In such a situation, it might be less costly to already transit to
another much more stable schedule before the predicted conflict actually

70

CHAPTER 2. THE PR-RCPSP

1 2 3

Figure 2.11: The precedence graph for the instance of the counterexample.

occurs. Such a transition is called a non-conflict-based transition. A
PR-policy that contain at least one non-conflict-based transition is called
a non-conflict-based PR-policy. To support our finding, we provide a
counterexample where a non-conflict-based PR-policy provides a better
solution than the optimal solution to P. Notice that, in our research, Π
only contains conflict-based PR-policies.

Consider the following instance of P. We are given a project with three
non-dummy activities. The set of activities is given as N = {0, 1, 2, 3, 4}
where activities 0 and 4 are dummy start and dummy end activities,
respectively. We only have one resource type with availability one. Each
activity needs exactly one resource unit to be executed. Figure 2.11 shows
the precedence relations among the activities of this instance. The set
P = {p1,p2,p3,p4} for this instance contains only four realizations that
are given as follows:

p1 = (0, 1, 1, 2, 0) π(p̃ = p1) = 0.21

p2 = (0, 1, 2, 2, 0) π(p̃ = p2) = 0.09

p3 = (0, 2, 1, 2, 0) π(p̃ = p3) = 0.49

p4 = (0, 2, 2, 2, 0) π(p̃ = p4) = 0.21

For this counterexample, we set the parameters w0,k = w1,k = w2,k = 0,
w3,k = 20, w4,k = 40 for each k ≥ 0 and let wb = 50, wr = 20, M = 1000.

There is a set Sdom of schedules with which we can construct every
dominant PR-policy. For this very small instance, Sdom is very small and
only contains the following four schedules:

s1 = (0, 0, 1, 2, 4), s2 = (0, 0, 1, 3, 5),

s3 = (0, 0, 2, 3, 5) and s4 = (0, 0, 2, 4, 6).

71

2.4. Discussion

The conflict-based PR-policy Π∗ ∈ Π, which is given below, happens
to be the optimal PR-policy for this instance of P.

Π∗ :

ΦΠ∗,1 : s3 γΠ∗,1 = 0, f(Π∗, 1) = 250

ΦΠ∗,2 : s3 t=3−−→ s4 γΠ∗,2 = 0, f(Π∗, 2) = 250 + 80

ΦΠ∗,3 : s3 γΠ∗,3 = 0, f(Π∗, 3) = 250

ΦΠ∗,4 : s3 t=3−−→ s4 γΠ∗,4 = 0, f(Π∗, 4) = 250 + 80

4∑
l=1

π(p̃ = pl)f(Π∗, l) = (0.21 + 0.49)× 250 + (0.09 + 0.21)× 330 = 274.

Now consider the following non-conflict-based PR-policy Π′:

Π′ :

ΦΠ′,1 : s3 t=1−−→ s2 γΠ′,1 = 0, f(Π′, 1) = 250 + 20

ΦΠ′,2 : s3 t=1−−→ s2 γΠ′,2 = 0, f(Π′, 2) = 250 + 20

ΦΠ′,3 : s3 γΠ′,3 = 0, f(Π′, 3) = 250

ΦΠ′,4 : s3 t=3−−→ s4 γΠ∗,4 = 0, f(Π′, 4) = 250 + 80

4∑
l=1

π(p̃ = pl)f(Π′, l) = 0.49× 250 + (0.09 + 0.21)× 270 + 0.21× 330

= 272.8.

We conclude that there might be non-conflict-based PR-policies with a
smaller combined cost than the best conflict-based PR-policy.

2.4.2 A possible tight lower bound

Similar models to Models 1-4 can be introduced to find the optimal non-
conflict-based PR-policy. One may wonder whether or not, when consid-
ering non-conflict-based PR-policies, we can achieve a better lower bound
for the expected cost until the end of execution upon leaving each feasible
state. In the following paragraph, we introduce an approach in which we
can efficiently compute better quality lower bounds that can be used in
such models.

Consider Model 3 and continuation cu = (F,O,%) and let F (cu) = F .
Based on the following conjecture, we might be able to assume that

LB(c3(cu, co′, de′, ν + 1)) = c3(cu′′, co′, de′, ν + 1)

where cu′′ = (F (cu), ∅, ()).

72

CHAPTER 2. THE PR-RCPSP

Conjecture 2.1. In an alternative model where non-conflict-based tran-
sitions are also allowed, the value c3(cu′′, co′, de′, ν + 1) where cu′′ =
(F (cu), ∅, ()) is a valid lower bound for the expected cost until the end
of execution upon leaving any given feasible state (cu, co′, de′, ν + 1).

2.5 Summary and future research

In this chapter, we introduced a proactive and reactive resource-constrained
project scheduling problem with duration uncertainty. The optimal solu-
tion of the problem is a PR-policy with the minimum expected combined
cost. This expected combined cost is a combination of an expected cost
of the baseline schedule, an expected cost of a series of reactions and an
expected cost of having no reaction possibility. We propose four different
Markov decision process models which can solve the problem over four dif-
ferent classes of policies. The computational results state that Model 2,
Model 3 and Model 4 perform better than the conventional method in-
troduced in Section 2.3 when the fixed reaction cost is large (wr ≥ 100).
When wr = 50, Model 3 and Model 4 generally outperform the conven-
tional method whereas Model 2 performs competitively against the con-
ventional method. When wr = 0, the conventional method outperforms
Model 2 and Model 3 and performs competitively against Model 4.

In future research, one might consider finding solutions with even lower
combined cost. Finding a diverse set of schedules which provides good
reaction possibilities among schedules is likely to reduce the combined
cost of the optimal solution in our models. Therefore, one future research
direction is to search for a wisely selected set of schedules that provides
both diversity and similarity among schedules. As a second future research
direction, finding new dominance rules to eliminate dominated reaction
possibilities might help reducing the computational resources needed to
solve our models. Apart from the two above mentioned directions, it seems
that investigating non-conflict-based PR-policies in much more detail is
very important and rewarding. Finally, we suggest interested researchers
to study the problem when the activity durations are dependent.

73

Chapter 3

The proactive and reactive resource-constrained
project scheduling problem: The crucial role
of buffer-based reactions

A goal without a plan is just a wish.

- Antoine de Saint-Exupery

In the previous chapter, we introduced the proactive and reactive
resource-constrained project scheduling problem (PR-RCPSP) in which
the goal is to find an optimal proactive and reactive policy (PR-policy).
In the first section of this chapter, we aim at understanding the importance
of certain classes of reactions (i.e., the class of selection-based reactions
and the class of buffer-based reactions) in constructing an optimal PR-
policy. In the second section, we take advantage of the insights provided
in the first section and propose an iterative schedule refinement technique
that outputs a set of schedules whose PR-policy is less expensive than
that of any of the methods introduced in the previous chapter.

The results presented in this chapter also appears in a FEB Research Report at
KU Leuven (Davari and Demeulemeester, 2017).

75

3.1. Two important classes of reactions

3.1 Two important classes of reactions

In this section, we study two classes of reactions, namely the class of
selection-based reactions and the class of buffer-based reactions. Both
selection-based reactions and buffer-based reactions are based on sufficient
selections. We first define what is a sufficient selection in Section 3.1.1,
and then introduce the concepts of selection-based reactions and buffer-
based reactions in Sections 3.1.2 and 3.1.3, respectively.

Our initial motivation to introduce these two classes of reactions was
the fact that we expected that those reactions among schedules which
are resulting from the same sufficient selections are often selected in the
optimal PR-policy. Therefore, the ultimate objective of this section is to
see what percentage of reactions in an optimal PR-policy are selection-
based and what percentage of reactions in an optimal PR-policy are buffer-
based.

3.1.1 Sufficient selection

A set FS of activities is a forbidden set if E ∩ (FS × FS) = ∅ and
∃k ∈ R :

∑
i∈FS rik > Rk. A forbidden sets FS is minimal if for every

i ∈ FS, the set FS \ {i} is not a forbidden set. We define F (·) as the set
of all minimal forbidden sets with · being a partial order among activities.
For instance, given the set E of precedence relations among activities,
F (E) is the set of minimal forbidden sets. The concept of forbidden sets
was first introduced by Igelmund and Radermacher (1983a).

One may use extra resource arcs to eliminate all minimal forbidden
sets. Similar ideas have been implemented to address resource incompat-
ibilities in both deterministic and stochastic resource-constrained project
scheduling problems (e.g., Alvarez-Valdes and Tamarit, 1993; Artigues
et al., 2013; Leus, 2011a,b). Let us define X ⊂ N ×N \ T (E) as a set of
pairs where each pair represents a resource arc. We assume that X is a
strict partial order (abbreviated by sp-order) on N (i.e., irreflexible and
transitive). For each (i, j) ∈ X, the completion time of activity i must be
smaller than or equal to the starting time of activity j. We follow Leus
(2011b) to call X a selection.

Definition 3.1 (Sufficient selection). A selection X is called sufficient if
and only if G(N,E ∪X) is acyclic and F (E ∪X) = ∅.

Example. Consider the instance provided in Section 2.1.3. For the reader’s
convenience, we repeat this instance’s data in Figure 3.1 and Tables 3.1

76

CHAPTER 3. THE CRUCIAL ROLE OF BB-REACTIONS

i

ri1

R1 = 8

2

3

7

3

8

4

1

2

3

4

5

3

4

4

6

2

Figure 3.1: A copy of Figure 1.1.

p̂i π(p̃i = p̂i + ε) wi,0
ε = −1 ε = 0 ε = +1

p̃0 0 0 1 0 -
p̃1 2 0.4 0.4 0.2 4
p̃2 7 0.3 0.5 0.2 4
p̃3 3 0 0.6 0.4 7
p̃4 4 0.1 0.5 0.4 1
p̃5 8 0.2 0.8 0 4
p̃6 6 0.4 0.6 0 1
p̃7 4 0.5 0.5 0 1
p̃8 2 0 0.7 0.3 1
p̃9 0 0 1 0 38

Table 3.1: A copy of Table 2.1.

and 3.2. Note that this instance is used in all examples in this section.
The AON representation of the precedence relations among the activities
for this instance is shown in Figure 3.1. For this instance, the set of
minimal forbidden sets is

F (E) = {{1, 2, 4}, {2, 3, 4}, {2, 3, 6}, {2, 4, 5}, {3, 6, 7}, {3, 6, 8}, {5, 6, 8}}.

Consider selection X1 = {(4, 2), (3, 6), (6, 8)}. Let us include these arcs
into the precedence network. The network in Figure 3.2 results. We notice
that X1 is a sufficient selection because it suffices to eliminate all minimal
forbidden sets (i.e., F (E ∪X1) = ∅).

77

3.1. Two important classes of reactions

sk

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

sk0 0 0 0 0 0 0 0 0 0 0
sk1 0 0 0 0 0 0 0 0 0 0
sk2 1 1 0 1 5 0 7 4 2 7
sk3 3 3 4 4 3 3 3 3 5 5
sk4 0 0 4 0 0 7 0 0 0 9
sk5 6 6 7 7 7 7 7 7 9 14
sk6 6 6 7 7 7 12 5 7 9 14
sk7 7 8 7 8 12 12 14 12 11 15
sk8 11 13 13 12 15 15 17 15 15 20
sk9 13 15 15 15 17 18 19 18 18 23

Table 3.2: A copy of Table 2.2.

i

ri1

R1 = 8

2

3

7

3

8

4

1

2

3

4

5

3

4

4

6

2

Figure 3.2: The precedence network for the example project including extra
(dashed) arcs for X1.

It is worth mentioning that, if a selection X is sufficient, then the
induced early-start schedule for every given p ∈ P, which is denoted by
ES(X,p), is feasible. However, we argue that the reverse relation is not
necessarily true. In other words, the fact that ES(X,p) is feasible for each
p ∈ P is not adequate to conclude that X is sufficient. In the following,
we provide a counterexample that supports the mentioned argument.

Example. Consider the deterministic version of the instance given in
the previous example. For this instance, P = {p̂} (remember from Ta-
ble 3.1 that p̂ = (0, 2, 7, 3, 4, 8, 6, 4, 2, 0)). Even though the selection X2 =

78

CHAPTER 3. THE CRUCIAL ROLE OF BB-REACTIONS

{(4, 2), (3, 6)} is not sufficient because F (E∪X2) = {{5, 6, 8}}, the schedule

ES(X2, p̂) = (0, 0, 4, 2, 0, 5, 5, 11, 13)

is feasible.

In the following, we discuss whether or not an efficient algorithm exists
that determines the sufficiency of a selection. The problem of determining
whether or not X is sufficient is equivalent to the problem of determin-
ing whether or not there is at least one (minimal) forbidden set for the
associated instance of the RCPSP with G(N,E ∪X). Both problems are
solved by finding the maximum weighted anti-chain in G(N,E∪X) where
weights are the resource requirements. Finding the maximum weighted
anti-chain in G(N,E∪X) is equivalent to finding the maximum weight in-
dependent set (or its associated maximum weight clique) in G(N,E ∪X).
From Grötschel et al. (1984, Theorem 6.5) we know that there exists a
polynomial-time algorithm for any maximum weight clique problem with
a perfect graph. Since any partially ordered set including G(N,E ∪X) is
a comparability graph (which is a well-known perfect graph), we conclude
that there must exist a polynomial algorithm that, given an instance of
RCPSP with G(N,E) and a selection X, determines whether or not X is
sufficient.

A number of polynomial algorithms exist to determine the maximum
weighted anti-chain (stable set) in G(N,E ∪ X), among which we cite
the max-flow-based algorithms described in Leus (2003), Neumann et al.
(2003) and Schwindt (2005). Other similar interesting results and algo-
rithms can be found in Cong (1993), Golumbic (1980) and Kaerkes and
Leipholz (1977).

3.1.2 Selection-based reactions

Since the activity durations are stochastic, robust schedules usually in-
clude buffers. Unlike many buffer insertion techniques in the literature in
which buffers are inserted before the start of the activities (e.g., Lam-
brechts et al., 2008a, 2011; Mehta and Uzsoy, 1998; Van de Vonder et al.,
2007b, 2008)), we assume that the buffers are inserted after the comple-
tion times of the activities. We also assume that buffers require the same
resources as their associated activities. There are two motivations behind
these assumptions. First, with these two assumptions, we ensure that
every vector of durations p ∈ P associates a vector of buffers b where
p = pmin + b. Second, in contrast with the alternative approach, in

79

3.1. Two important classes of reactions

which buffers are inserted before the start of the activities, this approach
produces no ‘useless’ buffers. When we insert buffers before the start of
activity i, only the activities that finished immediately before activity i
can use such buffers. If the resource requirements of these activities are
different from the resource requirements of activity i, there are chances
that these activities cannot use the inserted buffers, in which case the
inserted buffers are considered ‘useless’. Alternatively, when we insert
buffers after the completion time (according to its minimum duration)
of activity i, they become beneficial at least for activity i and are never
considered ‘useless’.

Given any schedule s and any vector of buffers b, a unique associated
sp-order can be constructed as follows. Let Xs,b represent the sp-order
induced by the pair (s,b). We define Xs,b by (i, j) ∈ Xs,b ⇔ si + pmin

i +
bi ≤ sj , where i, j ∈ N with i 6= j.

A sufficient selection X is feasible for schedule s if for some realization
p ∈ P (note that p = pmin + b), we have X ⊆ Xs,b \ T (E). Here the sp-
order induced by pair (s,0) becomes interesting because for every vector
of buffers b so that schedule s is feasible for p = pmin + b, the following
relation holds: Xs,b ⊆ Xs,0. Thus, we infer that a sufficient selection X is
feasible for schedule s if X ⊆ Xs,0 \ T (E).

Definition 3.2 (Selection-based reaction). A reaction from s to s′ is
selection-based if there is a sufficient selection X that is feasible for both
s and s′.

The following theorem provides the only necessary and also sufficient
condition for a given reaction to be selection-based.

Theorem 3.1. A reaction from s to s′ is selection-based if and only if
X = (Xs,0 ∩ Xs′,0) \ T (E) is sufficient.

Proof. On one hand, we argue that X = (Xs,0 ∩ Xs′,0) \ T (E) is feasible
for both s and s′ because X ⊆ Xs,0 \ T (E) and X ⊆ Xs′,0 \ T (E). If X is
sufficient, then the conditions of Definition 3.2 are met and the reaction
from s to s′ is selection-based.

On the other hand, if the reaction from s to s′ is selection-based,
then based on the definition there exists a selection X ′ that is feasible
for both s and s′. The immediate conclusion is that the two relations
X ′ ⊆ Xs,0 \ T (E) and X ′ ⊆ Xs′,0 \ T (E) must hold and therefore

X ′ ⊆ X = (Xs,0 ∩ Xs′,0) \ T (E)

80

CHAPTER 3. THE CRUCIAL ROLE OF BB-REACTIONS

also holds. It is straightforward to see that since X ′ is sufficient, X is
must also be sufficient which concludes the proof.

Based on Theorem 3.1, and as checking the sufficiency of a given selec-
tion can be done in polynomial time, determining whether or not a given
reaction is selection-based can also be done in polynomial time.

Example. Let us slightly change the instance given in the example of
Section 3.1.2 and construct a slightly different instance. The new instance
is exactly the same as the original instance except the distribution of the
duration of activity 3 which is given as follows:

π(p̃3 = 2) = 0.2, π(p̃3 = 3) = 0.4 and π(p̃3 = 4) = 0.4.

Therefore, unlike the original instance where pmin
3 = 3, in the new instance

pmin
3 = 2.

Consider the reaction from s7 to s9 for the new instance (the Gantt
charts associated with these two schedules are provided in Figure 3.3).
Figure 3.4(a) represents the associated graph for the transitive reduction
of Xs7,0 and Figure 3.4(b) represents the associated graph for the transi-
tive reduction of Xs9,0. Figure 3.4(c) depicts the associated graph for the
transitive reduction of (Xs7,0∩Xs9,0). As it can be noticed in the graph of
Figure 3.4(c), X = Xs7,0∩Xs9,0 \T (E) is sufficient (i.e., F (E∪X) = ∅).
Since, by definition, X is feasible for both s7 and s9, the reaction from s7

to s9 is a selection-based reaction.

Let us consider the reaction from s7 to s9 for the original instance.
In this case, pmin

3 = 3 and the arc (3, 6) in both graphs of Figures 3.4(a)
and 3.4(c) is replaced with (4, 6). Therefore, X is no longer sufficient
(there exists a forbidden set: {2, 3, 6}) and the reaction is not selection-
based.

3.1.3 Buffer-based reactions

Despite the fact that for every selection-based reaction from s to s′ there
is a sufficient selection X ⊆ (Xs,0 ∩ Xs′,0) \ T (E) that is feasible for both
s and s′, there is no guarantee that one can actually construct schedules
s and s′ using selection X (we assume that selection X can construct s
if and only if there exists a vector b such that s = ES(X,pmin + b)). In
this subsection, we introduce buffer-based reactions for which there exists
a selection that can be used to construct both participating schedules.

81

3.1. Two important classes of reactions

5
8

1 5 10 15

1

7
34

6

2

𝑆9
7

8

4

3

(a) Gantt chart for schedule s7

8

1 5 10 15

1

7

5
4

6

2

𝑆9
9

8

4

3 3

(b) Gantt chart for schedule s9

Figure 3.3: Gantt charts associated with schedules s7 and s9 in the example of
Section 3.1.2. In order to produce these Gantt charts, the vector of
minimum activity durations pmin is used. Note that the minimum
duration of activity 3 equals 2 for the new instance introduced for
the example of Section 3.1.2 and equals 3 for the original instance.

82

CHAPTER 3. THE CRUCIAL ROLE OF BB-REACTIONS

1

2

4

4

2

3

3

4

5

3

7

3

6

2

8

4

(a) This figure represents G(N, T̄ (Xs7,0))

1

2

4

4

2

3

3

4

5

3

7

3

6

2

8

4

(b) This figure represents G(N, T̄ (Xs9,0))

1

2

4

4

2

3

3

4

5

3

7

3

6

2

8

4

(c) This figure represents G(N, T̄ (Xs7,0 ∩ Xs9,0)) = G(N, T̄ (E ∪X)

Figure 3.4: The graphs associated with the example in Section 3.1.2.

83

3.1. Two important classes of reactions

A pair (X,b) induces schedule s ifX is sufficient and s = ES(X,pmin+
b). Similarly, a 3-tuple (X,b,b′) induces a pair of schedules (s, s′) if
X is sufficient, s = ES(X,pmin + b) and s′ = ES(X,pmin + b′). By
definition, if pair (X,b) induces s, then X is sufficient and s ∈ S(pmin+b)
(remember from the previous chapter that S(p) represents the set of all
feasible solutions for realization p). A similar argument is true for every
3-tuple (X,b,b′) and its induced pair (s, s′). Notice that while for each 3-
tuple (X,b,b′) there is exactly one induced pair of schedules, the reverse
relation is rarely true.

Definition 3.3 (Buffer-based reaction). A reaction from s to s′ is a
buffer-based reaction if there exists a 3-tuple (X,b,b′) that induces (s, s′).

In other words, a buffer-based reaction is a reaction in which a new
schedule is created only by changing the vector of buffers (i.e., the asso-
ciated selection remains the same).

Example. The selection-based reaction from s7 to s9 that has been pro-
vided in Section 3.1.2 is not a buffer-based reaction (see Section 3.1.4 in
which we provide the reason why this reaction is not buffer-based). In
contrast to this reaction, a reaction from s8 to s5 (see Figures 2.2(c)
and 2.2(d)) is buffer-based because there exists a 3-tuple (X,b,b′) with

X = {(4, 2), (3, 6), (6, 8)},
b = (0, 2, 2, 1, 1, 1, 1, 0, 1, 0) and

b′ = (0, 2, 1, 1, 2, 1, 1, 0, 0, 0)

that induces the pair (s8, s5).

Let us define the class of stochastically semi-active schedules. This
class consists of schedules, each of which is semi-active for at least one
vector of durations. We label these schedules differently than the semi-
active schedules since the original concept of semi-active schedules has
been defined for deterministic scheduling problems.

Theorem 3.2. For each schedule s, there exists at least one pair (X,b)
for which s = ES(X,b) if and only if s is stochastically semi-active.

Proof. On one hand, if there exists a pair (X,b) for which s = ES(X,b),
then by definition s is stochastically semi-active. On the other hand, if s
is stochastically semi-active, then there is at least a vector of durations
p ∈ P for which s is semi-active. Let b = p−pmin and X = Xs,b \T (E).
It is straightforward to see that X is sufficient and s = ES(X,b).

84

CHAPTER 3. THE CRUCIAL ROLE OF BB-REACTIONS

Based on the definition of buffer-based reactions and also Theorem 3.2,
if either s or s′ is not stochastically semi-active, the associated reaction
cannot be buffer-based. Our (initial) pool generation scheme, however,
only generates stochastically semi-active schedules.

Theorem 3.3. The class of buffer-based reactions is a subset of the class
of selection-based reactions.

Proof. If a reaction from s to s′ is buffer-based, then by definition there
is a selection X that is sufficient and that is feasible for both schedules s
and s′. Therefore this reaction is also selection-based.

From Theorem 3.3, we also infer that any reaction that is not selection-
based is certainly not buffer-based. However, in general, determining
whether or not a reaction from s to s′ is buffer-based is not trivial. We
need to either find one associated 3-tuple (X,b,b′) that induces (s, s′)
or to prove that there exists no such 3-tuple. We introduce the following
decision problem:

Problem BBP
Instance: A PR-RCPSP instance (N,E, p̃, r,R) and a pair (s, s′).
Question: Does there exist a 3-tuple (X,b,b′) that induces (s, s′)?

If the answer to BBP is ‘YES’, then the reaction from s to s′ is buffer-
based. Otherwise, if the answer is ‘NO’, the reaction is not buffer-based.
Currently, the complexity of this problem is still open. Nevertheless, in
Section 3.1.4, we provide an exponential time algorithm that solves BBP.

3.1.4 An implicit enumeration algorithm

As stated before, if the reaction is not selection-based, then the answer to
problem BBP is a definite ‘NO’. If however the reaction is selection-based
we must enumerate all 3-tuples (X,b,b′) with X ⊆ (Xs,0 ∩ Xs′,0) \ T (E)
and see if at least one of these 3-tuples satisfies the condition of Defini-
tion 3.3. In the following, we provide an implicit enumeration algorithm.

Consider schedule s and pair (X,b). Activity j pushes activity i in
schedule s for pair (X,b) if sj +pminj + bj = si and (j, i) ∈ T (X ∪E). Let
A(s, X,b) be the set of all pushing pairs (j, i) where j pushes i in schedule
s for pair (X,b). The set A(s, X,b) is called a complete pushing set if for
each i ∈ N \ {0} there is at least one (j, i) ∈ A(s, X,b). The following
theorem holds.

85

3.1. Two important classes of reactions

Theorem 3.4. s = ES(X,pmin+b) if and only if A(s, X,b) is a complete
pushing set.

Proof. If s = ES(X,pmin +b), then by definition each activity i ∈ N \{0}
starts at the completion time of another activity j ∈ N \{n+ 1} and thus
A(s, X,b) is a complete pushing set. On the other hand, if A(s, X,b) is a
complete pushing set, then sj +pminj + bj = si for each (j, i) ∈ A(s, X,b).

We also know that sj+p
min
j +bj ≤ si for each (j, i) ∈ T (X∪E). Therefore,

we conclude

si = max
(i,j)∈T (X∪E)

{sj + pminj + bj}

which suffices to infer that s = ES(X,pmin + b). Note that we assume
that the dummy start activity always starts and finishes at time zero.

Based on Theorem 3.4, we deduce that if both complete pushing sets
A(s, X,b) and A(s′, X,b′) exist, then a 3-tuple (X,b,b′) that induces
(s, s′) also exists.

We define a set B of activities (B ⊆ N \ {0, n + 1}) that represents
all activities that are evidently pushed by the dummy start activity (i.e.,
all activities that start at time zero in both schedules). We construct
an activity list (AL) by sorting all activities in N \ (B ∪ {0}) based on
the non-decreasing order of their starting times in one of the schedules
(for instance the schedule from which we react). As a breaking rule, the
activity with the smaller index is placed before the activity with the larger
index. Note that AL is an array with n−|B|+ 1 members and ALk refers
to the activity in the kth position in AL.

We propose a branching tree in which each node (which is denoted by
Nu where u is the index of the node, indicating the sequence in which
the nodes are visited) represents a pair of partially constructed pushing
sets (Au,A′u) with Au being the associated set of pushing pairs for s and
A′u being the associated set of pushing pairs for s′. The first two levels
are associated with the first activity in the AL, the second two levels are
associated with the second activity in the AL and so on. Finally the
last two levels are associated with the last activity in the AL. Therefore,
this tree consists of 2n levels. In each odd level of the tree, we add one
pushing pair (j, i) to Au and in each even level, we add one pushing pair
(j′, i′) to A′u where i and i′ are the associated activities for the two levels,
respectively.

Given any pair of partially constructed pushing sets (Au,A′u), we con-
struct an associated 3-tuple (X(Au,A′u),b(Au),b′(Au)) with X(Au,A′u)

86

CHAPTER 3. THE CRUCIAL ROLE OF BB-REACTIONS

being the associated selection and b(Au) and b′(Au) being the associ-
ated vectors of buffers. In the following, we explain how we compute
X(Au,A′u), b(Au) and b′(Au). Let Xa = (Xs,0 ∩Xs′,0) \T (E) be the set
of all arcs that are candidates to be included in any selection associated
to (Au,A′u). By assuming that j pushes i in s (which is equivalent to
adding (j, i) to Au), we also accept that all arcs (j, k) in T (E ∪Xa) such
that si > sk (note that sj +pmin

j + bj(Au) = si) are violated in s. The set
of all violating arcs that are induced by all pushing pairs in Au is referred
to as V (Au). We obtain V (A′u) in a similar way. The associated selection
X(Au,A′u) is computed as follows:

X(Au,A′u) = Xa \ (V (Au) ∪ V (A′u)).

Moreover, for each partially constructed pushing set Au, we compute its
associated set of buffers which is denoted by b(Au) as follows:

bj(Au) =

{
0 if ∀i ∈ N \ {0, j}, (j, i) /∈ Au
si − sj − pmin

j if ∃i ∈ N \ {0, j}, (j, i) ∈ Au
.

With a similar reasoning, we can obtain b′(Au).
Not every possible choice of (Au,A′u) is feasible. A pair of pushing sets

(Au,A′u) is feasible if its associated 3-tuple (X(Au,A′u),b(Au),b′(Au))
induces (s, s′). In the following, we propose five conditions that must be
met to conclude that (Au,A′u) is feasible. The proofs for the necessity of
these five conditions are given in Theorem 3.5.

Condition 3.1. For every i, i′, j ∈ N such that (j, i) ∈ Au and (j, i′) ∈
Au, the equality si = si′ holds. Also, for every i, i′, j ∈ N such that
(j, i) ∈ A′u and (j, i′) ∈ A′u, the equality s′i = s′i′ holds.

Condition 3.2. s and s′ are resource feasible for pmin+b(Au) and pmin+
b′(A′u), respectively.

Condition 3.3. (V (Au) ∪ V (A′u)) ∩ T (E) = ∅.

Condition 3.4. X(Au,A′u) is sufficient.

Condition 3.5. Both Au and A′u are complete pushing sets.

The following theorem holds.

Theorem 3.5. (Au,A′u) is feasible if and only if Conditions 3.1 to 3.5
are met.

87

3.1. Two important classes of reactions

Proof. This proof consists of two parts. In the first part, we prove the
necessity of these five conditions whereas in the second part we prove
the sufficiency of the combination of these five conditions. Note that as
we mentioned earlier, a pair (Au,A′u) is feasible if its associated 3-tuple
(X(Au,A′u),b(Au),b′(Au)) induces (s, s′).

In the following, we provide reasons why the violation of each of Con-
ditions 3.1 to 3.5 guarantees the infeasibility of (Au,A′u).

• If i, i′, j ∈ N such that (j, i) ∈ Au and (j, i′) ∈ Au, then whatever
value bj(Au) takes we have

sj + pmin
j + bj(Au) = si = si′ .

A similar argument is true if i, i′, j ∈ N such that (j, i) ∈ A′u and
(j, i′) ∈ A′u, for which case s′i must be equal to s′i′ . Notice that
any pair (Au,A′u) that violates Condition 3.1 contradicts the above
arguments.

• If Condition 3.2 does not hold, then any 3-tuple (X,b,b′) such that
Au ⊆ A(s, X,b) and A′u ⊆ A(s′, X,b′) cannot induce (s, s′) sim-
ply because the pushing pairs in Au and A′u (which also exist in
A(s, X,b) and A(s′, X,b′), respectively) cause resource infeasibili-
ties in schedule s and/or schedule s′.

• If Condition 3.3 does not hold, then the pushing pairs in Au and A′u
cause the violation of some of the precedence constraints in T (E)
and thus any 3-tuple (X,b,b′) such that Au ⊆ A(s, X,b) and A′u ⊆
A(s′, X,b′) cannot induce (s, s′).

• Condition 3.4 must not be violated because otherwise no selection
X ⊆ X(Au,A′u) is sufficient and thus (s, s′) cannot be induced.

• Both Au and A′u must be complete pushing sets because otherwise
based on Theorem 3.4 we have s 6= ES(X(Au,A′u),pmin + b(Au))
and/or s′ 6= ES(X(Au,A′u),pmin + b′(Au)).

In the second part of the proof, we provide adequate reasonings that
support the sufficiency of the combination of the above five conditions to
conclude the feasibility of (Au,A′u). When Conditions 3.1 to 3.4 hold, we
can infer that both schedules resulted from ES(X(Au,A′u),pmin +b(Au))
and ES(X(Au,A′u),pmin+b′(Au)) are stochastically semi-active (because
of Condition 3.1), resource feasible (because of Conditions 3.2 and 3.4)

88

CHAPTER 3. THE CRUCIAL ROLE OF BB-REACTIONS

and precedence feasible (because of Condition 3.3). When Condition 3.5
holds, based on Theorem 3.4 we have

s = ES(X(Au,A′u),pmin + b(Au)) and

s′ = ES(X(Au,A′u),pmin + b′(Au)).

Therefore, we conclude that Conditions 3.1 to 3.5 are sufficient to deter-
mine the feasibility of (Au,A′u).

Each node (Au,A′u) in an even level l (including level zero (l = 0)) is
branched into a number of nodes (Au ∪ {(j, i)},A′u) in level l + 1 (which
is an odd level) with associated activity i = ALd(l+1)/2e where (j, i) ∈
T (E ∪ X(Au,A′u)). Likewise, each node (Au,A′u) in an odd level l′ is
branched into a number of nodes (Au,A′u∪{(j′, i′)}) in level l′+1 (which is
an even level) with an associated activity i′ = ALd(l′+1)/2e where (j′, i′) ∈
T (E ∪X(Au,A′u)).

Theorem 3.6. The violation of each one of Conditions 3.1 to 3.4 in
node (Au,A′u) guarantees that no direct or transitive child of (Au,A′u) is
feasible. Therefore, such a node must be fathomed.

Proof. The proof becomes apparent by referring to the first four bullets
in the proof of Theorem 3.5.

The branching starts with the root node N0 : (A0,A′0) = (∅, ∅). The
root node is branched into a number of nodes ({(j, i)}, ∅), each associ-
ated with one possible pushing pair (j, i) to be added to Au. In the
second level, each node ({(j, i)}, ∅) is branched into a number of nodes
({(j, i)}, {(j′, i)}), each associated with one possible pushing pair (j′, i) to
be added to A′u. In the other levels we continue branching in the same
fashion as in the first two levels. Backtracking occurs if at least one of the
Conditions 3.1 to 3.4 is violated (see Theorem 3.6). As soon as a pair
of complete pushing sets is constructed (which happens when we visit a
feasible node on the level 2(n−|B|+1)), the algorithm immediately halts
and the answer to problem BBP is ‘YES’. If after visiting all nodes in the
tree no such pair of complete pushing sets is constructed, the answer to
problem BBP is ‘NO’.

Example. Consider the selection-based reaction from s7 and s9 for the
slightly changed instance provided in Section 3.1.2. In order to determine
whether this reaction is also buffer-based or not, we use the algorithm
described above to implicitly enumerate all potential 3-tuples (X,b7,b9).

89

3.1. Two important classes of reactions

1

2

3 4

5 6

7 8

9

10

11

12

13 14

15 16

17 18

19

20

21

l = 0

l = 1

l = 2

l = 3

l = 4

l = 5

(1, 3) in s7

(1, 3) in s9 (4, 3) in s9

(1, 6) in s7 (3, 6) in s7

(1, 6) in s9 (3, 6) in s9

(1, 2) in s7

(4, 6) in s9

(4, 6) in s7

(4, 3) in s7

(1, 3) in s9 (4, 3) in s9

(1, 6) in s7 (3, 6) in s7

(1, 6) in s9 (3, 6) in s9

(1, 2) in s7

(4, 6) in s9

(4, 6) in s7

F

F

F

F

F

F

F

F

F

C1

C1

C1 C1

C1

C2

C2

C2

C2

C3

C3

C4

Figure 3.5: The tree associated with the example in Section 3.1.4.

We construct AL by ordering activities based on their starting times in
one of the schedules (in this case schedule s7) and removing all activities
that start at time zero (these activities are pushed by the dummy start
activity):

AL = (3, 6, 2, 5, 7, 8, 9).

We also compute X = (Xs7,0 ∩ Xs9,0) \ T (E) as follows:

X = {(1, 2), (1, 6), (1, 7), (1, 8), (3, 6), (3, 7), (3, 8), (4, 3), (4, 5)}.

Figure 3.5 illustrates the tree associated with this example. The label
above each node indicates the pushing pair that is added to the partially
constructed pushing sets. The number inside each node represents the
index of the node (notice that nodes are visited in the non-decreasing order
of their indices). The associated activity in level one and level two is
ALd1/2e = ALd2/2e = 3, the associated activity in level three and level
four is ALd3/2e = ALd4/2e = 6 and the associated activity in level five is

90

CHAPTER 3. THE CRUCIAL ROLE OF BB-REACTIONS

ALd5/2e = 2. The branching starts with the root node N1 : (A7
1,A9

1) =
(∅, ∅) in level zero. The root node is branching into two nodes: the first
child node N2 : (A7

2,A9
2) = ({(1, 3)}, ∅) enforces activity 3 to be pushed

by activity 1 in s7 and the second child node N12 : ({(4, 3)}, ∅) enforces
activity 3 to be pushed by activity 4 in s7. Likewise, N2 is branched into
two nodes: the first child node N3 : ({(1, 3)}, {(1, 3)}) enforces activity 3
to be pushed by activity 1 in both s7 and s9 whereas the second child node
N4 : ({(1, 3)}, {(4, 3)}) enforces activity 3 to be pushed by activity 1 in s7

and by activity 4 in s9. All other nodes are branched in the same fashion.
All nodes with an ‘F’ letter are associated with feasible partially con-

structed sets of pushing pairs. All nodes with a ‘C’ letter are nodes that
are infeasible due to one of the conditions discussed above. For instance,
node N5 violates Condition 3.1 because activity 1 pushes both activities 3
and 6 in s7, yet s7

3 6= s7
6. Node N3 violates Condition 3.2 because s9 is not

resource feasible for pmin+b9(A9
3) at time 2 when activities 1 and 4 are on-

going and there are not enough available resources to start activity 2. Node
N15 violates Condition 3.3 because (V (A7

15)∪ V (A9
15))∩ T (E) = {(1, 3)}.

Finally, node N11 violates Condition 3.4 because

X(A7
11,A9

11) =Xa \ {(4, 3)}
={(1, 2), (1, 6), (1, 7), (1, 8), (3, 6), (3, 7), (3, 8), (4, 5)}

is not sufficient (there exists a forbidden set {2, 3, 4}). As after visiting
all nodes in the tree, no pair of complete pushing sets is constructed, we
conclude that the answer to problem BBP is ‘NO’ and thus the reaction
from s7 to s9 is not buffer-based.

3.1.5 Computational results

In this section, we run an experiment to evaluate the importance of
selection-based reactions and buffer-based reactions. In this experiment,
we use Model 3 proposed in the previous chapter to obtain a PR-policy.
We set λ = 1, κ1 = 500, κ2 = 50 and κ3 = 4.

In Table 3.3, we report the ratio (in percentage) of the selection-
based reactions to all reactions (SB), the ratio (in percentage) of selected
selection-based reactions to all selected reactions (SBS), the ratio (in per-
centage) of selection-based reactions in the optimal PR-policy to all re-
actions in the optimal PR-policy (SBO) and the ratio SBO

SB (which is a
measure of importance) for different choices of wb and wr. Note that a
reaction that is selected to be the best among its rivals, might not be part

91

3.1. Two important classes of reactions

wb wr SB SBS SBO SBO
SB

25
0 48.57 94.34 98.87 2.04
50 48.57 92.30 98.21 2.02
100 48.57 90.00 97.67 2.01

50
0 48.57 94.34 98.69 2.03
50 48.57 92.30 98.69 2.03
100 48.57 90.00 98.38 2.03

Table 3.3: The ratio (in percentage) of the selection-based reactions to all
reactions.

of the optimal solution. We observe that about half of the reactions in
the network are selection-based. The fact that this number is so high is
probably because of the way we generate the set of schedules. The results
in Table 3.3 indicate that more than 90 percent of the reactions that are
selected and more than 97 percent of the reactions in the optimal PR-
policy are selection-based. By looking at the ratio SBO

SB , we notice that
the chance of having a selection-based reaction in the optimal policy is
more than two times larger than the chance of having a selection-based
reaction in the whole network. This fact emphasizes even further the
importance of selection-based reactions and suggests that studying these
reactions and then focusing on generating them is one promising way to
find higher-quality PR-policies.

To just get an idea of how much focusing on selection-based reactions
will benefit us, we slightly modify Model 3 where we remove all non-
selection-based reactions from the network. This model is called SB-
Model 3 and its associated combined cost is referred to as SBCC. Table 3.4
reports some results on the comparison between Model 3 and SB-Model 3.
As is shown in the table, by allowing only selection-based reactions, we
on average lose less than 0.03 percent in quality while we need to solve a
much smaller network, which is quite promising.

Within the class of selection-based reactions, the buffer-based reac-
tions seem to be even more important. In Table 3.5, we report the ratio (in
percentage) of the buffer-based reactions to all reactions (BB), the ratio
(in percentage) of selected buffer-based reactions to all selected reactions
(BBS), the ratio (in percentage) of buffer-based reactions in the optimal
PR-policy to all reactions in the optimal PR-policy (BBO) and the ra-
tio BBO

BB for different choices of wb and wr. These results indicate that
only around 35 percent of the reactions are buffer-based. Nevertheless,

92

CHAPTER 3. THE CRUCIAL ROLE OF BB-REACTIONS

wb wr SBCC CC DEV

25
0 1692.26 1691.87 0.03
50 1820.07 1819.70 0.02
100 1899.88 1899.39 0.03

50
0 3278.01 3277.43 0.02
50 3437.57 3436.95 0.02
100 3557.78 3557.43 0.01

Table 3.4: The average combined cost when only selection-based reactions are
considered (SBCC), that when all reactions are considered (CC)
and the average deviation (in percentage) of SBCC from CC.

wb wr BB BBS BBO BBO
BB

25
0 34.90 73.35 88.92 2.55
50 34.90 70.85 86.44 2.48
100 34.90 68.90 85.35 2.45

50
0 34.90 73.35 88.55 2.54
50 34.90 70.85 88.09 2.52
100 34.90 68.90 86.84 2.49

Table 3.5: The ratio (in percentage) of the buffer-based reactions to all reac-
tions.

these reactions do have a considerably large contribution in the optimal
PR-policy (85 to 90 percent). By comparing the ratios BBO

BB and SBO
SB ,

we may infer that buffer-based reactions are slightly more important than
selection-based reactions. However, this conclusion is not completely fair
since a large percentage (around 70 percent) of selection-based reactions
are also buffer-based. Therefore, we introduce the class of selection-but-
not-buffer-based reactions which contains all selection-based reactions that
are not buffer-based.

Table 3.6 reports the ratio (in percentage) of the selection-but-not-
buffer-based reactions to all reactions (SNB), the ratio (in percentage) of
selected selection-but-not-buffer-based reactions to all selected reactions
(SNBS), the ratio (in percentage) of selection-but-not-buffer-based reac-
tions in the optimal PR-policy to all reactions in the optimal PR-policy
(SNBO) and the ratio SNBO

SNB for different choices of wb and wr. Notice that
the class of buffer-based reactions and the class of selection-but-not-buffer-
based reactions combined construct the class of selection-based reactions.

93

3.1. Two important classes of reactions

wb wr SNB SNBS SNBO SNBO
SNB

25
0 13.67 21.00 9.95 0.73
50 13.67 21.45 11.77 0.86
100 13.67 21.10 12.32 0.90

50
0 13.67 21.00 10.14 0.74
50 13.67 21.45 10.60 0.76
100 13.67 21.10 11.54 0.84

Table 3.6: The ratio (in percentage) of the selection-but-not-buffer-based re-
actions to all reactions.

We observe that around 15 percent of all reactions are selection-but-not-
buffer-based reactions. Although, these reactions are selection-based, they
have a relatively small contribution (around 10 to 13 percent) in the op-
timal PR-policy. By looking at ratios BBO

BB and SNBO
SNB , we observe that

buffer-based reactions are considerably more important than selection-
but-not-buffer-based reactions: the chance of having a buffer-based re-
action in the optimal policy is almost 3 times larger than the chance of
having a selection-but-not-buffer-based reaction in the optimal policy.

To further understand the importance of the buffer-based reactions,
we report part of the information provided in Tables 3.3, 3.5 and 3.6 using
a pie chart representation. In Figure 3.6, we depict the contributions of
three mutually exclusive and collectively exhaustive classes of reactions
in the network of Model 3 and in its associated optimal PR-policy for the
problem setting where wb = 25 and wr = 0.

The classes under comparison are the class of non-selection based
(NSB) reactions, the class of buffer-based (BB) reactions and the class
of selection-but-not-buffer-based (SNB) reactions. Figure 3.6(a) shows
the contributions of these classes of reactions in the whole network and
Figure 3.6(b) displays the contributions of these classes of reactions in
the associated optimal PR-policy. The futility of non-selection-based reac-
tions in the optimal PR-policy is very clear in Figure 3.6 (NSBO represents
the percentage of non-selection-based reactions in the optimal PR-policy):
although 52.43 percent of reactions are non-selection-based, the contribu-
tion of these reactions in the optimal PR-policy is only 1.13 percent. It
is also clear that buffer-based reactions are very important: as stated be-
fore, despite the fact that only 34.90 percent of reactions are buffer-based,
their contribution in the optimal PR-policy is very high (88.92 percent).

94

CHAPTER 3. THE CRUCIAL ROLE OF BB-REACTIONS

BB
34.90%

SNB
13.67%

NSB
52.43%

(a) The average contributions of
different classes of reaction in
the whole network

BBO
88.92%

SNBO
9.95%

NSBO
1.13%

(b) The average contributions of
different classes of reaction in
the optimal PR-policy

Figure 3.6: The average contributions of different classes of reaction for the
setting where wb = 25 and wr = 0.

wb wr BBCC CC DEV

25
0 1701.98 1691.87 0.67
50 1826.28 1819.70 0.40
100 1904.10 1899.39 0.27

50
0 3288.60 3277.43 0.39
50 3444.49 3436.95 0.24
100 3563.02 3557.43 0.17

Table 3.7: The average combined cost when only buffer-based reactions are
considered (BBCC), that when all reactions are considered (CC)
and the average deviation (in percentage) of BBCC from CC.

To indicate how much we can rely solely on buffer-based reactions, we
slightly modify Model 3 where we remove all non-buffer-based reactions
from the network. This model is called BB-Model 3 and its associated
combined cost is referred to as BBCC. Table 3.7 reports some results
on the comparison between Model 3 and BB-Model 3. As is shown in
the table, by focusing only on buffer-based reactions, we lose on average
between 0.17 to 0.67 percent in quality.

The importance of buffer-based reactions varies for different classes of
instances. Table 3.8 reports the ratios BB, BBS, BBO and BBO

BB for differ-
ent values of NC (network complexity), for different values of RF (resource
factor) and for different values of RS (resource strength). The parameter
NC reflects the average number of non-redundant precedence relations
per activity including dummy activities, the parameter RF represents the

95

3.1. Two important classes of reactions

BB BBS BBO BBO
BB

NC
1.5 33.26 70.51 87.12 2.62
1.8 32.83 68.92 85.30 2.60
2.1 38.61 73.67 89.68 2.32

RF

0.25 50.01 77.67 90.42 1.81
0.5 32.73 70.17 84.86 2.59
0.75 25.51 68.78 88.28 3.46

1 31.34 67.51 85.91 2.74

RS
0.2 19.07 80.70 94.27 4.94
0.5 19.72 59.75 82.22 4.17
0.7 28.91 63.22 84.87 2.94
1 71.90 80.47 88.10 1.23

Table 3.8: The ratio (in percentage) of the buffer-based reactions to all reac-
tions for different classes of instances.

average portion of resources used and consumed and the parameter RS
measures the strength of resource constrainedness. We refer interested
readers to Kolisch and Sprecher (1997) where these parameters are intro-
duced. Comparing the ratios BB, BBS, BBO and BBO

BB , we observe that
the importance of buffer-based reactions remains almost constant when
choosing different values for NC. When RF is increased, the ratio BBO
stays between 85 percent and 90 percent. However, the ratio BB first
decreases (down to 25.51 percent) and then increases and therefore, BBO

BB
first increases (up to 3.446) and then decreases. When RS is increased,
on one hand, the ratio BBO first decreases (down to 82.22 percent) and
then increases, and on the other hand, the ratio BB increases rapidly
(specially when RS changes between 0.5 and 1). Taking both trends into
consideration, we notice that by increasing RS the ratio BBO

BB continuously
decreases. All in all, we conclude that the buffer-based reactions are of
the greatest importance when RF = 0.75 and RS = 0.2.

3.1.6 Discussion

The results presented in Section 3.1.5 confirm the importance of the
selection-based and buffer-based reactions, both of which put emphasis
on the unique selection of resource arcs (resource flow) between sched-
ules, in optimal PR-policies. One might wonder how and to what extent
we can use this important property to construct a set of simple and com-

96

CHAPTER 3. THE CRUCIAL ROLE OF BB-REACTIONS

pact rules that suggest proper reactions for infeasible situations without
actually solving the PR-RCPSP. The idea of finding a set of simple and
compact rules seems very similar to that of policies introduced in Sec-
tion 1.2.1 within the context of the SRCPSP.

Following the results in the previous subsection, we observe that the
probability that a reaction in an optimal PR-policy is selection-based
is very high. This suggests that finding an appropriate selection based
on which the reactions are made is very promising. Such a selection
and its application very much resembles the set of added resource arcs
associated with an early start policy (remember that the class of early
start policies is one of the classes of policies introduced in Section 1.2.1).
Let us introduce the class of early start PR-policies as follows: an early
start PR-policy is represented by (X, sbase,M) where X is a sufficient
selection that also represents the additional resource arcs to be added
to the precedence network, sbase represents a baseline schedule and M
is a mechanism that appropriately introduces buffers (which is crucially
important when reaction costs are large). Aside from the process of finding
X and sbase that seems to be very difficult, developing M appears to be
very challenging. Therefore, what is discussed in this subsection is solely
an attempt to introduce a future area of research.

Despite the fact that most of the reactions in an optimal PR-policy are
selection-based, the number of unique associated selections in an optimal
PR-policy can be very large and therefore searching for an early start
PR-policy that is described in the previous paragraph seems to be very
naive. Alternatively, we introduce another class of PR-policies. Consider
a list L of |F| items where each item is associated with one forbidden set
in F . List L advocates a sufficient selection X if for each FS ∈ F there
exists a pair (i, j) ∈ X such that i, j ∈ FS and j is the item in L that
is associated with FS. If one single list advocates all members of a set
of selections, then we may argue that such a set of selections resembles a
pre-selective policy introduced in Section 1.2.1 (note that a pre-selective
policy advocates a group of ES-policies that are slightly different from
each other). Let us introduce the class of pre-selective PR-policies as
follows: each pre-selective PR-policy is represented by (L, sbase,M). We
believe that the following conjecture holds:

Conjecture 3.1. The following statements are true:

• An instance of SRCPSP can be converted to an instance of PR-
RCPSP and can be optimally solved by any method that optimally

97

3.2. The selection of schedules

solves PR-RCPSP. The optimal PR-policy associated with such an
instance is the optimal policy to the SRCPSP.

• The counterparts of all classes of policies introduced in Section 1.2.1
are subsets of the class of all PR-policies.

3.2 The selection of schedules

To obtain a high-quality PR-policy, the choice of the input set of sched-
ules is very important. On one hand, since one of the very important
decisions is the choice of the baseline schedule, the set of schedules must
contain a number of potential baseline schedules that are considerably
different from each other. On the other hand, we need schedules that are
closely-related (share very similar cuts and/or continuations) to increase
the probability that reactions are selection-based or possibly buffer-based.
These two conditions make the process of selecting the set of schedules
very challenging.

3.2.1 A schedule refinement technique

We focus on generating high-quality sets of schedules for which our mod-
els, proposed in the previous chapter, output higher quality PR-policies.
To achieve this goal, a multi-stage technique is proposed to gradually re-
fine and then reconstruct the set of initial schedules such that the result-
ing PR-policy becomes less costly. The motivation behind choosing such a
multi-stage technique lies in the fact that finding a high-quality neighbor-
hood of schedules is very important in obtaining high-quality PR-policies.
The multi-stage technique that is proposed in this section outputs a much
less diverse neighborhood of high-quality initial schedules from which the
final set of schedules is constructed. Therefore, in the model associated
with the final set of schedules, the probability of having selection-based
reactions and the probability of having buffer-based reactions are much
higher than those when multi-stage technique is not used.

Our proposed multi-stage method is detailed in Algorithm 3.1. In
this algorithm, ξ determines the number of stages in our procedure. The
function solveModel(S,ModelX) calls ModelX to be solved over the set
of schedules S. ModelX can be any of the proposed Models (Model 1,
Model 2, Model 3 or Model 4) in the previous chapter. The function
avgCostOf(S) outputs the average of all expected combined costs of the

98

CHAPTER 3. THE CRUCIAL ROLE OF BB-REACTIONS

Algorithm 3.1 Multi-stage method

Input: A set Sinit of initial schedules, the value e that represents the
percentage of elite schedules and the value ξ that indicates the maximum
number of iterations.

1: S = Sinit

2: itr = 0
3: bestAvgCost =∞
4: while itr < ξ do
5: solveModel(S,ModelX)
6: if avgCostOf(S) < bestAvgCost then
7: Sinit = S
8: bestAvgCost = avgCostOf(S)
9: selectElites(S, e)

10: repopulate(S)
11: itr = itr + 1

Output: Sinit

baseline schedules in S. The expected combined cost of a baseline sched-
ule s is the expected combined cost of the best policy that includes s as its
baseline schedule. The function selectElites(S, e) selects a subset contain-
ing e percent of the schedules with the lowest expected combined cost as
the subset of elite schedules. Finally, the function repopulate(S) replaces
the non-elite schedules with newly generated schedules. Note that the size
of the set of schedules (S) always remains the same over all iterations.

We also refer to our multi-stage method as a ξ-stage schedule refine-
ment method. Note that in a 1-stage method no refinement is happening
and the input and the output sets of initial schedules are identical.

3.2.2 An alternative initial pool generation scheme

The performance of the initial pool generation scheme (Algorithm 2.2),
described in the previous chapter, highly depends on the choice of κ3.
By increasing the value κ3, the resulting generated schedules are more
loose (i.e., include larger buffers). While large buffers may be ideal when
reaction costs are high, their presence becomes inefficient when reaction
costs are low. Therefore, it might be beneficial to introduce an alternative
initial pool generation scheme in which a larger variety of schedules, in
terms of looseness, is generated. We provide such an alternative scheme

99

3.2. The selection of schedules

Algorithm 3.2 An alternative initial pool generation scheme

Input: κ2 and κ3

1: Sinit = ∅
2: nS = 0
3: while nS < κ2 do
4: if nS mod 3 = 0 then
5: κ̂3 = κ3 − 1
6: else if nS mod 3 = 1 then
7: κ̂3 = κ3

8: else
9: κ̂3 = κ3 + 1

10: generate κ̂3 random realization p1, ...,pκ̂3

11: pmax = max{p1, ...,pκ̂3
}

12: s = DH(pmax)
13: Sinit ← s
14: nS = nS + 1

Output: Sinit

in Algorithm 3.2. In the alternative scheme κ3 is replaced by κ′3. The
idea is to generate a third of the schedules with κ′3 = κ3 − 1, one third
with κ′3 = κ3 and the last third with κ′3 = κ3 + 1 (x mod y represents
the remainder of x divided by y). To indicate which one of the two
algorithms (Algorithm 2.2 or Algorithm 3.2) is used to generate the set
of initial schedules we introduce a new parameter ϑ which equals 0 if
Algorithm 2.2 is used and equals 1 if Algorithm 3.2 is used.

3.2.3 The computational performance

We run Model 3 equipped with our ξ-stage schedule refinement method
over the 48 instances introduced in Section 2.3.1. In Table 3.9, an overview
of the results is given. In this experiment, we set the problem settings as
follows: wb = 50, wr = 100 and λ = 1. We also fix some of the algorithm
settings: κ2 = 50, κ3 = 4 and ϑ = 0. We report the CPU times, the
combined cost, the number of states, the number of cuts and the number
of continuations for each combination of ξ and κ1 where ξ = 1, 2, 5, 10 or
20 and κ1 = 500 or 1000.

Based on the results provided in Table 3.9, we notice that by increasing
the number of stages (ξ), the combined cost (CC) is improved consider-

100

CHAPTER 3. THE CRUCIAL ROLE OF BB-REACTIONS

κ1 ξ CPU CC #states #cuts #cons

500

1 94.32 3557.43 2905097 29888 6146
2 33.29 3536.28 1173225 10303 5737
5 26.67 3516.02 784955 5698 5568
10 21.02 3510.65 610524 4608 5556
20 22.00 3506.13 604575 4591 5519

1000

1 403.90 3547.65 6997712 40172 11780
2 149.30 3528.60 2790268 13371 11109
5 111.37 3512.35 1843120 7398 10737
10 88.27 3507.77 1513340 6328 10725
20 86.92 3503.70 1435924 6110 10676

Table 3.9: Summary of the results for Model 3.

ably. Moreover, we notice that having more stages to refine the initial
set of schedules, much to our surprise, results in a smaller required total
computational time (which also includes the time required to process the
schedule refinement stages). To understand this strange behavior, we re-
port detailed CPU times for different sub-procedures in Table 3.10. As
expected, the time required to run the initial pool generation procedure
(column IPGP) remains the same for all settings, the time required to
run ξ-stage procedure (column ξ-Stage) increases by increasing ξ. In con-
trast to our expectation, the time required to run Model 3 decreases by
increasing ξ. This can be justified by the fact that by increasing the num-
ber of stages, the schedules in the final set become more similar to one
another and thus the numbers of unique cuts and unique continuations
are reduced.

In Figure 3.7, we depict the contributions of three mutually exclusive
and collectively exhaustive classes of reactions in the network of Model 3
and in its associated optimal PR-policy when a 10-stage method is used
for the problem setting where wb = 25 and wr = 0. Comparing this figure
with Figure 3.6, we observe that the percentage of non-selection-based re-
actions (NSB) in the whole network has been reduced drastically whereas
the percentages of buffer-based reactions and selection-based reactions
have been increased favorably. We also observe that the contributions of
these three classes in their optimal PR-policies have not been changed
compared to the contributions of the same classes of reactions in their op-
timal PR-policies when no schedule refinement technique is implemented.
The latest observation supports the hypothesis that the portions of buffer-

101

3.2. The selection of schedules

κ1 ξ IPGP ξ-Stage Model Total

500

1 4.85 0 89.47 94.32
2 4.18 1.48 27.63 33.29
5 4.36 1.90 20.40 26.67
10 4.32 2.48 14.22 21.02
20 4.30 3.43 14.26 22.00

1000

1 4.16 0 399.72 403.90
2 4.10 1.44 143.74 149.30
5 4.13 1.83 105.39 111.37
10 4.33 2.41 81.51 88.27
20 4.21 3.49 79.20 86.92

Table 3.10: The detailed CPU times for different sub-procedures.

BB
70.11%

SNB
26.07%

NSB
3.83%

(a) The average contributions of
different classes of reaction in
the whole network

BBO
87.73%

SNBO
12.04%

NSBO
0.23%

(b) The average contributions of
different classes of reaction in
the optimal PR-policy

Figure 3.7: The average contributions of different classes of reaction when the
multi-stage method is used and for the setting where wb = 25 and
wr = 0.

based reactions and selection-based reactions in the optimal PR-policy do
not significantly change by choosing different sets of schedules.

3.2.4 The choice of parameters

The choices of the parameters may have positive or negative effects on the
performance of our methods. In this subsection, we design an experiment
to study the effects of seven parameters: wb, wr, κ1, κ2, κ3, ϑ and e (note
that we deliberately exclude ξ from the analysis in this subsection since
its significance is straightforward). The first two parameters are problem

102

CHAPTER 3. THE CRUCIAL ROLE OF BB-REACTIONS

κ1 κ2 κ3
ϑ = 0 ϑ = 1

e = 0.1 e = 0.2 e = 0.1 e = 0.2

500
50

3 1669.52 1668.71 1671.82 1671.50
4 1674.58 1673.55 1676.88 1673.88

100
3 1660.49 1661.30 1661.09 1662.62
4 1666.42 1666.31 1665.86 1666.20

1000
50

3 1667.93 1666.07 1670.41 1670.12
4 1673.24 1673.99 1674.50 1674.83

100
3 1659.84 1661.13 1659.34 1660.60
4 1665.17 1666.10 1664.31 1664.59

Table 3.11: The effect of the different parameters for wb = 25 and wr = 0.

κ1 κ2 κ3
ϑ = 0 ϑ = 1

e = 0.1 e = 0.2 e = 0.1 e = 0.2

500
50

3 1786.74 1786.39 1785.70 1785.02
4 1784.12 1783.18 1786.44 1784.78

100
3 1778.14 1779.01 1779.25 1779.08
4 1776.42 1777.50 1777.56 1777.13

1000
50

3 1784.45 1785.09 1785.29 1785.04
4 1783.18 1782.94 1782.74 1782.63

100
3 1778.02 1776.41 1777.51 1777.16
4 1776.19 1775.20 1776.64 1776.01

Table 3.12: The effect of the different parameters wb = 25 and wr = 50.

setting parameters, whereas the last five parameters are associated with
the algorithm setting. These five parameters may influence the perfor-
mance of our algorithm differently for each combination (wb, wr). In this
experiment, we allow two different values for each problem setting param-
eter: wb = 25 or 50 and wr = 0 or 50. Therefore, the total number of
combinations of (wb, wr) is four: (25, 0), (25, 50), (50, 0) and (50, 50).

In order to study the above-mentioned effects in more detail, for each
combination (wb, wr) we provide a 25 factorial experimental design where
κ1 = 500 or 1000, κ2 = 50 or 100, κ3 = 3 or 4, ϑ = 0 or 1 and e = 0.1 or
0.2. For each combination of these parameters, we run four replications
(by changing the seed of the random generator) of our Model 3 on the
benchmark set of 48 instances. The cost associated with each replication
is the average of the combined costs of the 48 instances.

103

3.2. The selection of schedules

κ1 κ2 κ3
ϑ = 0 ϑ = 1

e = 0.1 e = 0.2 e = 0.1 e = 0.2

500
50

3 3208.95 3211.75 3201.35 3202.97
4 3241.13 3240.93 3225.94 3228.12

100
3 3194.38 3193.51 3186.05 3187.41
4 3220.92 3222.74 3206.17 3205.00

1000
50

3 3207.27 3203.28 3200.15 3199.89
4 3238.74 3237.65 3223.92 3222.38

100
3 3190.88 3190.84 3183.37 3183.57
4 3220.65 3218.14 3205.65 3205.64

Table 3.13: The effect of the different parameters wb = 50 and wr = 0.

κ1 κ2 κ3
ϑ = 0 ϑ = 1

e = 0.1 e = 0.2 e = 0.1 e = 0.2

500
50

3 3390.40 3389.20 3389.05 3392.26
4 3399.40 3399.06 3397.28 3395.54

100
3 3376.99 3375.58 3376.55 3377.04
4 3386.38 3385.22 3382.62 3383.22

1000
50

3 3386.73 3386.36 3385.91 3386.95
4 3398.50 3397.10 3395.28 3392.92

100
3 3373.90 3373.09 3374.41 3373.78
4 3384.12 3382.08 3380.00 3381.08

Table 3.14: The effect of the different parameters wb = 50 and wr = 50.

For the problem setting where wb = 25 and wr = 0, Table 3.11 reports
the average cost of the four replications for each combination of the five
parameters. For this problem setting, the best combination of parameters
(κ1, κ2, κ3, ϑ, e) is (1000, 100, 3, 1, 0.1) (indicated in bold in Table 3.11).
For the problem setting wb = 25 and wr = 50 (see Table 3.12), the best
combination of parameters is (1000, 100, 4, 0, 0.2). For the problem setting
wb = 50 and wr = 0 (see Table 3.13), the best combination of parameters
is exactly the same as the best combination for the problem setting where
wb = 25 and wr = 0 (i.e., (1000, 100, 3, 1, 0.1)). Finally, for the problem
setting where wb = 50 and wr = 50 (see Table 3.14), the best combination
of parameters is (1000, 100, 3, 0, 0.2) (which is slightly different from the
best combination for the problem setting where wb = 25 and wr = 50).

104

CHAPTER 3. THE CRUCIAL ROLE OF BB-REACTIONS

settings
factors

κ1 κ2 κ3 ϑ e
wb = 25 and wr = 0 0.017 0.000 0.000 0.055 0.976
wb = 25 and wr = 50 0.001 0.000 0.000 0.709 0.356
wb = 50 and wr = 0 0.000 0.000 0.000 0.000 0.802
wb = 50 and wr = 50 0.000 0.000 0.000 0.011 0.397

Table 3.15: The associated p-values of the algorithm parameters for different
problem settings.

For each problem setting, we perform an ANOVA with main effects
and 2-way interactions. Table 3.15 reports the p-values for the main effects
for each problem setting. With a significance level of 0.05, we notice that
the effects of κ1, κ2 and κ3 are significant for all settings and the effect
of e is never significant. The effect of ϑ (the choice of the initial pool
generation procedure) is certainly significant when wb = 50, is almost
significant when wb = 25 and wr = 0 and is certainly not significant when
wb = 25 and wr = 50.

To sum it up, it appears that for all four problem settings, the best
combinations include κ1 = 1000 and κ2 = 100. This is quite in line with
our expectation since a larger κ2 results in a more diverse set of schedules
in the initial pool generation scheme and a large κ1 guarantees more
(buffer-based) reaction possibilities. Moreover, when wr = 0 the best
value for ϑ is 1 and when wr = 50 the best value for ϑ is 0. This behavior
is also inline with our expectation because, as we argued in Section 3.2.2,
the presence of large buffers is beneficial when wr is relatively large and
is not beneficial when wr is relatively small.

3.3 Summary and conclusion

In the first section of this chapter, we introduce two very important classes
of reactions, namely the class of selection-based reactions and the class of
buffer-based reactions. We show that the class of buffer-based reactions
is a sub-class of the class of selection-based reactions and that selection-
based reactions, specially those that are also buffer-based, contribute most
in the construction of optimal PR-policies. We also show that by relying
only on selection-based reactions (or even by relying only on buffer-based
reactions), we are still capable of producing high quality PR-policies. In

105

3.3. Summary and conclusion

the second section of this chapter, we introduce a multi-stage refinement
technique that helps us build a refined set of initial schedules, thus increas-
ing the probability of having selection-based or buffer-based reactions in
the model.

As a future research topic, we strongly advice to study the classes
of early start PR-policies and pre-selective PR-policies. Interested re-
searchers might also introduce other classes of PR-policies. Also, we sug-
gest to compare the performance of the best early start (or pre-selective)
PR-policy with the best known PR-policy. The analysis of such compar-
isons and the insights resulting from that will probably open new avenues
of research in proactive and reactive project scheduling problems.

106

Chapter 4

A novel branch and bound algorithm for the
chance-constrained resource-constrained proj-
ect scheduling problem

Everybody [in this country] should learn to program a
computer, because it teaches you how to think.

- Steve Jobs

In order to incorporate uncertainty into the resource-constrained proj-
ect scheduling problem (RCPSP) and obtain robust solutions, Lamas and
Demeulemeester (2016) introduce the chance-constrained RCPSP (CC-
RCPSP) in which the makespan is minimized while the actual executed
schedule is identical to the planned schedule with a certain minimum prob-
ability. In other words, the idea behind CC-RCPSP is to find a proactive
solution that is as short as possible and needs no reaction with a certain
minimum required probability. This probability, which is usually given

A preliminary version of this chapter appeared as FEB Research Report KBI 1620
at KU Leuven (Davari and Demeulemeester, 2016b). This work has also been submitted
for publication.

107

4.1. Problem description

by the managerial team, will be defined as the confidence level in the
remainder of this chapter.

In this chapter, we introduce a novel B&B algorithm that can solve
instances of the CC-RCPSP until optimality. The novelty of our B&B al-
gorithm is reflected in its branching schemes. In these branching schemes,
we use the notion of casets that will be introduced and defined in Sec-
tion 4.3.1. Although the focus of this chapter is to solve the CC-RCPSP,
as will be discussed in Section 4.5, the proposed branching schemes can be
used to solve any chance-constrained programming (CCP) problem with
discrete random right-hand side (rhs) vector provided that an exact solu-
tion oracle exists for the problem’s deterministic counterpart.

To the best of our knowledge, the first research on CCP problems
with discrete random rhs vector is the one studied by Prékopa (1990).
Ruszczyński (2002) proposes a mixed integer programming formulation
together with some valid inequalities for a CCP problem with a rhs vec-
tor. Recently, stronger facet-defining valid inequalities are proposed by
Luedtke et al. (2010) and Küçükyavuz (2012). Among many papers in
which a CCP problem with discrete random rhs vector has been intro-
duced to handle uncertainty, we only cite Lamas and Demeulemeester
(2016) who propose a B&C algorithm that solves instances of the sample
average approximation counterpart of CC-RCPSP to optimality.

The remainder of this chapter is structured as follows. First, in Sec-
tion 4.1 a compact description of CC-RCPSP and its sample average ap-
proximation counterpart (abbreviated by SAA-RCPSP) is given. Then,
both a mixed integer linear programming (MILP) formulation and a B&B
algorithm that optimally solve instances of the SAA-RCPSP are proposed
in Section 4.2 and Section 4.3, respectively. Next, computational results
are reported in Section 4.4 and the application of the proposed branch-
ing schemes for the general integer problem is discussed in Section 4.5.
Finally, a summary and conclusion is given in Section 4.6.

4.1 Problem description

Similarly to the previous chapters, we are given a set N = {0, 1, ..., n+ 1}
of activities where activities 0 and n+1 are the dummy start and dummy
end activities. Each activity i ∈ N ′ = N \ {0, n + 1} has a stochastic
non-negative integer duration p̃i, with pmin

i ≤ p̃i ≤ pmax
i , which follows a

discrete distribution dist(p̃i). We assume that these stochastic durations
are independently distributed. Notice that the durations of the dummy

108

CHAPTER 4. A NOVEL B&B FOR CCRCPSP

activities are not stochastic (p̃0 = p̃n+1 = 0). We are also given a set R
of renewable resource types. Each job i requires rik units of resource type
k ∈ R during its processing time and the resource availability of resource
type k is denoted by Rk. The set E ⊂ {(i, j)|i, j ∈ N} defines precedence
constraints among the activities where the pair (i, j) ∈ E indicates that
activity j cannot be started before activity i is completed.

Let s, which is a vector of non-negative starting times of the activities,
be a solution for the RCPSP and p̂ be its vector of deterministic activity
durations. A conceptual formulation for the RCPSP can be formulated
as follows:

RCPSP: min
s
sn+1

subject to:

sj − si ≥ p̂i ∀(i, j) ∈ E (4.1)∑
i∈Ot(s,p̂)

rik ≤ Rk ∀k ∈ R, t = 0, ..., T (4.2)

s ∈ Nn+2. (4.3)

where T is an upper bound on the makespan and Ot(s, p̂) is the corre-
sponding set of ongoing activities at time period [t, t+ 1) if s is the vector
of starting times and p̂ represents the activity durations. Notice that we
assume N = Z+ ∪{0}. In the above formulation, the objective function is
to minimize the completion time of the project (makespan). Constraints
(4.1) ensure that all precedence relations among activities are fulfilled,
whereas constraints (4.2) represent the resource constraints.

Let π(·) be the probability that constraints · are satisfied and (1− α)
be the confidence level defined by the decision maker (note that 0 ≤ α ≤ 1
and α usually takes a value very close to 0, for example α = 0.05, α = 0.10
or α = 0.20, otherwise the resulting schedule is not feasible for a large
number of cases). A conceptual formulation for the CC-RCPSP is given
as follows:

CC-RCPSP: min
s
sn+1

subject to constraint (4.3) and

π

(
sj − si ≥ p̃i ∀(i, j) ∈ E∑
i∈Ot(s,p̃) rik ≤ Rk ∀k ∈ R, t = 0, ..., T

)
≥ 1− α. (4.4)

In the above formulation, constraint (4.4) ensures that the sets of con-
straints (4.1) and (4.2) combined are not violated with a chance of (1−α).

109

4.1. Problem description

The CC-RCPSP is proven to be strongly NP-hard following the straight-
forward reduction from the RCPSP.

4.1.1 A realization-based reformulation

The vector p̃ = (p̃0, p̃1, ..., p̃n+1) can be represented by a finite supporting
set P = {p1, ...,p|P|} of realizations where each realization pl represents a
vector of durations pl = (pl0, p

l
1, ..., p

l
n+1) ∈ P. Each realization pl occurs

with a certain probability π(p̃ = pl), which is also represented by the
much shorter notation πl. Clearly, the summation of the probabilities of
all realizations equals one (

∑
pl∈P πl = 1).

Constraint (4.4) is very difficult to tackle. Alternatively, we decide to
ensure the feasibility of each solution by finding a sufficient subset Y of
realizations for which the solution is feasible. A subset Y of realizations
is called sufficient if and only if

∑
pl∈Y πl ≥ (1 − α). We introduce pY

as the vector of maximum durations of subset Y which is computed as
follows:

pYi = max
pl∈Y
{pli} ∀i ∈ N. (4.5)

Let YP be the set of all sufficient subsets of P. The CC-RCPSP can be
reformulated as follows:

CC-RCPSP-R : min
(Y,s)

sn+1

subject to constraint (4.3) and

sj − si ≥ pYi ∀(i, j) ∈ E (4.6)∑
i∈Ot(s,pl)

rik ≤ Rk ∀k ∈ R,pl ∈ Y, t = 0, ..., T (4.7)

∑
pl∈Y

πl ≥ (1− α) (4.8)

Y ∈ YP. (4.9)

In the above formulation, constraints (4.6) make sure that no prece-
dence violation occurs for any realization pl ∈ Y and constraints (4.7)
ensure that no resource violation occurs for any realization pl ∈ Y . Con-
straint (4.8) dictates a confidence level of at least (1− α).

Notice that constraints (4.7) are not linear and therefore we propose
the following overprotecting but linear constraints to replace them:

110

CHAPTER 4. A NOVEL B&B FOR CCRCPSP

∑
i∈Ot(s,pY)

rik ≤ Rk ∀k ∈ R, t = 0, ..., T. (4.10)

The following formulation results:

CC-RCPSP-R-OP : min
(Y,s)

sn+1

subject to constraints (4.3), (4.6), (4.8)-(4.10).

Although CC-RCPSP-R-OP is an overprotected formulation, it can be
used as an intermediate step to obtain a sample average approximation
formulation.

4.1.2 A sample average approximation

The size of the associated finite supporting set of realizations is often too
large, and thus we use a sample average approximation (SAA) technique,
which is based on Monte Carlo sampling, to generate a much smaller set
P̂ of m realizations which approximates the original set P (note that the
size m influences the quality of the approximation).

We introduce the associated SAA counterpart of the CC-RCPSP (in
short SAA-RCPSP) as follows:

SAA-RCPSP : min
(Y,s)

sn+1

subject to constraint (4.3), (4.6), (4.10) and∑
pl∈Y

πl ≥ (1− α̂) (4.11)

Y ∈ YP̂. (4.12)

where 1− α̂ is the required confidence level for this counterpart problem
(note that 1 − α̂ > 1 − α). In the special case where πl = 1/m for all

realizations pl in P̂, constraint (4.11) can be replaced by constraint (4.13).

|Y | ≥ d(1− α̂)×me (4.13)

Let ε = α− α̂ and let pmax = maxi∈N{pmax
i }. Following the theorems

in Luedtke and Ahmed (2008), one can show that any feasible solution to
an instance of SAA-RCPSP is also feasible to the associated instance of
CC-RCPSP with a probability of (1− θ) if

m ≥ 1

2ε2
log

(
1

θ

)
+

n

2ε2
log(pmax). (4.14)

111

4.2. A mathematical formulation

For instance if pmax = 30, then m must be at least 9123 to ensure that
any feasible solution to an instance of SAA-RCPSP is also feasible to the
associated instance of CC-RCPSP with a probability of 0.95. However,
Luedtke and Ahmed (2008) also argue that this lower bound for m is very
conservative and one often achieves similar confidence with much smaller
m. In this chapter, we choose m between 100 and 1600.

As the final part of this section, we pinpoint two remarks. First,
because solving CC-RCPSP becomes computationally intractable, in Sec-
tions 4.2 and 4.3, we opt to solve the SAA-RCPSP, which is proven to be a
good approximation for CC-RCPSP (Lamas and Demeulemeester, 2016).
However, given unlimited computational resources, the methods presented
in Sections 4.2 and 4.3 can solve instances of CC-RCPSP. Second, while
using the SAA technique to generate a set of realizations, generally the
probability of occurrence of every single generated realization is the same
as that of any other realization in that set and equals 1/m. However, our
methods are designed for a more general case where the probabilities of
occurrences of realizations need not be the same.

4.2 A mathematical formulation

In this section, we introduce a MILP formulation for the SAA-RCPSP
which is the chance-constrained version of the resource-flow formulation
proposed by Artigues et al. (2003). Let us define variables xij that equal
one if activity i is completed before the start of activity j and zero oth-
erwise. We also introduce the variables fijk which represent the amount
of resource type k that is passed from activity i to activity j. Finally, we
define variables yl such that if yl = 1, then s must be feasible for realiza-
tion pl (pl ∈ Y) and if yl = 0, then the feasibility of s for realization pl is
not necessary (pl /∈ Y). We propose the following MILP formulation for
the SAA-RCPSP:

SAA-RCPSP-MILP : min
s
sn+1

subject to:

xij = 1 ∀(i, j) ∈ E (4.15)

xij + xji ≤ 1 ∀(i, j) ∈ N2, i 6= j (4.16)

fijk ≤Mrxij ∀(i, j) ∈ N ′2, i 6= j,∀k ∈ R (4.17)

f0jk ≤ rjkx0j ∀(0, j) ∈ N ′2, j 6= 0,∀k ∈ R (4.18)

112

CHAPTER 4. A NOVEL B&B FOR CCRCPSP

fi(n+1)k ≤ rikxi(n+1) ∀(i, n+ 1) ∈ N ′2, i 6= n+ 1,∀k ∈ R
(4.19)∑

j∈N
f0jk = Rk ∀k ∈ R (4.20)

∑
j∈N

fijk = rik ∀i ∈ N, ∀k ∈ R (4.21)

∑
j∈N

fjik = rik ∀i ∈ N, ∀k ∈ R (4.22)

sj − si −Mp(xij − 1) ≥ ylpli ∀(i, j) ∈ N2, i 6= j,∀l = 1, ...,m (4.23)
m∑
l=1

(1− yl)πl ≤ α̂ (4.24)

s ∈ Nn+2,x ∈ {0, 1}(n+2)2

(4.25)

f ∈ R|R|(n+2)2

,y ∈ {0, 1}m (4.26)

where Mp =
∑
i∈N p

max
i and Mr = min{rik, rjk}. In the above formula-

tion, the set of constraints (4.15) enforces the precedence relations among
activities. The set of constraints (4.16) ensures that the two variables xij
or xji are not both one. The sets of constraints (4.17)-(4.22) represent
the resource flow among activities. Constraints (4.23) guarantee that s is
feasible for realization pl if yl = 1. Finally, constraint (4.24) ensures that
the cumulative probability of the occurrences of the realizations in the
set Y (realizations pl for which yl = 1) is at least (1− α̂). Based on the
definitions, for each feasible vector y, we can derive an associated suffi-
cient set of realizations Y . Let us introduce py which equals its associated
vector pY . We have

pYi = py
i = max

pl∈P̂
{ylpli} = max

pl∈Y
{pli}.

The set of constraints (4.23) can be replaced by the following set of con-
ceptual constraints:

sj − si −Mp(xij − 1) ≥ py
i ∀(i, j) ∈ N2, i 6= j. (4.27)

Although constraints (4.27) form a nonlinear term, they can be used to
understand which realizations should be included in or excluded from Y .
An obvious finding is that in order to reduce the makespan (sn+1) and
possibly find an optimal solution, we must choose y in such a way that

113

4.2. A mathematical formulation

for some activities i, the value py
i takes a smaller value than pmax

i . This
finding is the main motivation for the reformulation introduced in the
following subsection.

4.2.1 A stronger formulation

In Luedtke et al. (2010), a stronger reformulation has been proposed for
the general chance-constrained optimization problem. We follow the steps
to obtain a stronger reformulation for the SAA-RCPSP. Let δi be the vec-
tor of activity durations for each realization in P̂, sorted in non-increasing
order. In other words, δki is the kth largest duration for activity i. In order
to keep track of the realizations in each sorted vector δi, we introduce σik
which represents the associated realization for each pair (i, k) (in other
words, we have δki = pσiki). For example, if p5

i is the second largest dura-
tion for activity i, then δ2

i = p5
i and σi2 = 5. We provide a more detailed

example in Section 4.2.2. For each activity i, we define ηi ≤ m as the
largest k ∈ {1, ...,m} that satisfies

∑k
s=1 πσis ≤ α̂. Parameter ηi can be

described as an upper bound on the number of realizations pl that can be
excluded from Y (yl = 0) such that the resulting Y is still sufficient and
py
i is minimized. Notice that η0 = ηn+1 = 0. Thus, a stronger formulation

can be obtained for the SAA-RCPSP:

SAA-RCPSP-MILP2: min
s
sn+1

subject to: constraints (4.15)-(4.22), (4.24)-(4.26) and

sj − si −Mp(xij − 1) ≥ δ1
i −

ηi∑
k=1

(δki − δk+1
i)(1− zik) ∀(i, j) ∈ N2, i 6= j

(4.28)

zik − yσik ≥ 0 ∀i ∈ N, k = 1, ..., ηi (4.29)

zi,k+1 − zik ≥ 0 ∀i ∈ N, k = 1, ..., ηi (4.30)

zi,ηi+1 = 1 ∀i ∈ N (4.31)

zik ∈ {0, 1} ∀i ∈ N, k = 1, ..., ηi. (4.32)

In the above formulation, zik is zero if we decide not to consider the
kth largest duration for activity i and one otherwise. Also if zik = 0, then
the feasibility of the resulting schedule is not guaranteed for its associated
realization (σik) and thus we enforce yσik = 0 (constraints (4.29)). Ob-
viously, it would be inefficient if zik = 1 and zi,k+1 = 0. Therefore, such

114

CHAPTER 4. A NOVEL B&B FOR CCRCPSP

i p1
i p2

i p3
i p4

i p5
i p6

i p7
i p8

i p9
i p10

i

1 3 3 3 2 2 3 3 1 1 3
2 10 5 9 6 8 6 7 11 11 6
3 2 3 4 3 3 2 5 4 5 1
4 4 3 6 6 6 5 4 2 4 4
5 7 7 5 9 12 6 6 5 9 9
6 7 9 4 6 5 4 9 7 9 8
7 3 4 4 2 5 4 6 4 6 2
8 1 1 3 3 2 3 3 3 2 2

Table 4.1: The set P̂ of realizations for the example.

i δ1
i δ2

i δ3
i δ4

i δ5
i δ6

i δ7
i δ8

i δ9
i δ10

i

1 3 3 3 3 3 3 2 2 1 1
2 11 11 10 9 8 7 6 6 6 5
3 5 5 4 4 3 3 3 2 2 1
4 6 6 6 5 4 4 4 4 3 2
5 12 9 9 9 7 7 6 6 5 5
6 9 9 9 8 7 7 6 5 4 4
7 6 6 5 4 4 4 4 3 2 2
8 3 3 3 3 3 2 2 2 1 1

Table 4.2: The matrix δ for the example.

cases are eliminated by constraints (4.30). It is not very difficult to see
that in no feasible schedule zi,ηi+1 could be equal to zero and therefore
the strength of the linear relaxation bound can be improved by adding
constraints (4.31). Notice that the set of constraints (4.28)-(4.32) is a
much stronger alternative for the set of constraints (4.23).

4.2.2 An example

We consider an instance of the problem with n = 8 and m = 10. The
precedence relations among activities as well as the resource consump-
tions are given in Figure 3.1. An example set of realizations P̂ and the
associated matrices δ and σ are given in Tables 4.1 to 4.3.

In these three tables, the numbers associated with realization p6 are
shown in bold. Note that these tables will be used in all examples given
in the remainder of this chapter.

115

4.3. Branch-and-bound

i σi,1 σi,2 σi,3 σi,4 σi,5 σi,6 σi,7 σi,8 σi,9 σi,10

1 1 2 3 6 7 10 4 5 8 9
2 8 9 1 3 5 7 4 6 10 2
3 7 9 3 8 2 4 5 1 6 10
4 3 4 5 6 1 7 9 10 2 8
5 5 4 9 10 1 2 6 7 3 8
6 2 7 9 10 1 8 4 5 3 6
7 7 9 5 2 3 6 8 1 4 10
8 3 4 6 7 8 5 9 10 1 2

Table 4.3: The matrix σ for the example.

4.3 Branch-and-bound

In this section, we propose a B&B algorithm that solves the SAA-RCPSP.
The idea is to find a schedule with minimum makespan that is feasible for
at least one sufficient set of realizations. Let Y denote a set of realizations
and let O(pY) be an optimization oracle that solves the RCPSP while the
vector of activity durations is pY . We define sY as the schedule obtained
by running O(pY). Because sY is feasible for the problem with pY , it
is also feasible for all realizations in Y . Thus, if Y is a sufficient subset,
then it provides a confidence level of (1− α̂).

For each Y , there exists a complement set Ȳ of realizations such that
Y ∪ Ȳ = P̂. For each pair (Y, Ȳ), Y is referred to as the included set and
Ȳ is referred to as the excluded set. Obviously, if Y is a sufficient subset,
then the cumulative probability of occurrence of the realizations in Ȳ is
smaller than or equal to α̂. Let Ξ be the set of all pairs (Y, Ȳ) for which∑

pl∈Ȳ πl ≤ α̂. The SAA-RCPSP can be reformulated as follows:

min
(Y,Ȳ)∈Ξ

sYn+1.

Inspired by this conceptual formulation, we aim to use a B&B algo-
rithm to enumerate all pairs (Y, Ȳ) ∈ Ξ and find a pair (Y ∗, Ȳ ∗) with the
minimum corresponding makespan (sY

∗

n+1).

4.3.1 Constructing the tree

As we already mentioned, we aim to find the optimal pair (Y ∗, Ȳ ∗) using
a B&B algorithm. Since the included set (Y) and the excluded set (Ȳ)

116

CHAPTER 4. A NOVEL B&B FOR CCRCPSP

are the complement of each other, it is sufficient to only enumerate all
valid excluded sets (or all valid included sets). A conventional branching
scheme can be perfectly used to enumerate all excluded sets by starting
from the set of all realizations and in each node/level excluding a single
realization. However, we opt not to directly exclude single realizations,
but instead we exclude chained sets (abbreviated to casets) of realizations
in our novel branching schemes.

Let us introduce Cki as the caset of realizations with the kth highest
duration for activity i. The exclusion of caset Cki from pair (Y, Ȳ) ∈ Ξ
results in the pair (Y \Cki , Ȳ ∪Cki). This exclusion is possible only if the
resulting pair (Y \ Cki , Ȳ ∪ Cki) is also a member of Ξ.

We immediately notice that not all possible exclusions are necessarily
evaluated. Only those exclusions that have a positive impact must be
considered. Therefore, we introduce the notion of beneficial exclusions.
The exclusion of caset Cki from pair (Y, Ȳ) ∈ Ξ is labeled beneficial if and

only if it is possible and pY \C
k
i < pY (obviously if pY \C

k
i = pY , then

sY \C
k
i = sY and the associated exclusion is not beneficial). We assume

that p < p′ if ∃i ∈ N, pi < p′i and ∀i′ ∈ N \ {i}, pi ≤ p′i.

Corollary 4.1. The exclusion of caset Cki from pair (Y, Ȳ) ∈ Ξ is bene-
ficial if it is possible, Ȳ ∪Cki 6= Ȳ and (C1

i ∪ ...∪C
k−1
i) ⊆ Ȳ . The reverse

relation does not necessarily hold.

Some casets can never be beneficially excluded. Since considering such
casets is not efficient, we limit our search to only eligible casets.

Definition 4.1 (Eligible caset). An eligible caset is a caset that can be
beneficially excluded.

We introduce set CE as the set of all eligible casets. Let us compute
π(Cki) =

∑
pl∈Cki

πl. The following theorem is derived.

Theorem 4.1. A caset Cki is eligible if and only if
∑k
s=1 π(Csi) ≤ α̂.

Proof. Consider the following two sets:

Y1 = P̂ \ (C1
i ∪ ... ∪ Ck−1

i) and Y2 = Y1 \ Cki .

If the inequality
∑k
s=1 π(Csi) ≤ α̂ holds, both sets must be sufficient sets.

We also know that pY2
i < pY1

i . Therefore, we conclude that the exclusion
of Cki from Y1 is beneficial and Cki is eligible.

These sets are named chained sets because they often relate to each other like a
group of chains

117

4.3. Branch-and-bound

On the other hand, if Cki is eligible, it can be beneficially excluded and
therefore (C1

i ∪ ...∪C
k−1
i) ⊆ Ȳ . Since any beneficial exclusion is possible,

we have
∑k
s=1 π(Csi) ≤ α̂.

We define ζi as the number of eligible casets associated with activity i.
For each activity i, the caset corresponding to the highest duration (C1

i) is
referred to as the lead caset. Other casets that associate with the second
duration, third duration, etc are referred to as the second caset, third
caset, etc, respectively.

Example 4.1. Let α̂ = 0.4 and

π = (π1, ..., π10) = (0.2, 0.15, 0.15, 0.1, 0.1, 0.1, 0.05, 0.05, 0.05, 0.05).

The set of eligible casets for the example is

CE = {C1
2 = {8, 9}, C2

2 = {1},
C1

3 = {7, 9}, C2
3 = {3, 8},

C1
4 = {3, 4, 5},

C1
5 = {5}, C2

5 = {4, 9, 10},
C1

6 = {2, 7, 9}, C2
6 = {10},

C1
7 = {7, 9}, C2

7 = {5}}.

In this case, the lead casets are C1
2 , C

1
3 , C

1
4 , C

1
5 , C

1
6 and C1

7 . We also com-
pute: ζ0 = ζ1 = ζ8 = ζ9 = 0, ζ4 = 1 and ζ2 = ζ3 = ζ5 = ζ6 = ζ7 = 2.

4.3.1.1 Constructing the activity list

In this part, we construct an activity list (AL) (note that all activities i for
which ζi = 0 are not considered in this list) that defines the order based on
which activities are considered in our proposed branching schemes (that
are introduced in Sections 4.3.1.2 and 4.3.1.3). We introduce different
priority rules that can be used to construct such an AL. Each priority
rule consists of a sorting criterion based on which the activities are sorted
and (possibly) a number of tie breakers. Two example priority rules are
given below.

(Rule 1) We sort activities based on the lexicographical order of the realiza-
tions in their σi vector.

118

CHAPTER 4. A NOVEL B&B FOR CCRCPSP

(Rule 2) We sort activities based on the decreasing order of their lead caset
sizes. As the first/second/etc tie breaking rule, we consider the sizes
of their second/third/etc casets.

Although the performance of these two priority rules are acceptable
(see Section 4.4.2), better rules can be achieved by incorporating more
important criteria. We propose to take three criteria into consideration
while sorting the activities:

• The first criterion is the total slack (TS) of the activity. Given
realization p and a feasible schedule s, let esi(s,p) and lsi(s,p) be
the earliest and the latest starting times of activity i, respectively.
We denote by εi(s,p) the total slack of activity i for the given pair
(s,p). This total slack is computed as follows: εi(s,p) = lsi(s,p)−
esi(s,p). Activities with smaller total slack values are favored to be

positioned first in the list. In our experiments, we use sP̂ and pP̂

to compute total slacks.

• The second criterion is the number of eligible casets (NEC) asso-
ciated with the activity. Those activities with smaller numbers of
casets (smaller ζi) are favored to be positioned first in the list.

• The last criterion is the influence factor (IF) of the activity. The
influence factor of activity i, which is denoted by ψi, is computed
as follows:

ψi =

ζi∑
k=1

pmax
i − v(Cki)∑k

s=1 |Csi |

where v(Cki) represents the resulting duration of activity i if Cki
and its corresponding earlier casets (Ck−1

i ,Ck−2
i ,etc) are eliminated.

Activities with larger influence factor values are favored to be posi-
tioned first in the list.

Example 4.2. We compute the IF for activity 5 as follows:

ψ5 =
12− 9

1
+

12− 7

4
= 4.25.

One of these three criteria is selected as the main sorting criterion.
The other two criteria are exploited as the first and the second tie break-
ers. The question is in which order we consider these three criteria such

119

4.3. Branch-and-bound

Priority rule Sorting criterion First tie breaker Second tie breaker
Rule 3 TS (↑) NEC (↑) IF (↓)
Rule 4 TS (↑) IF (↓) NEC (↑)
Rule 5 NEC (↑) TS (↑) IF (↓)
Rule 6 NEC (↑) IF (↓) TS (↑)
Rule 7 IF (↓) TS (↑) NEC (↑)
Rule 8 IF (↓) NEC (↑) TS (↑)

Table 4.4: Different priority rules obtained by different combinations of the
following three criteria: total slack (TS), number of casets (NEC)
and influence factor (IF). Symbol (↑) represents an ascending order
and (↓) denotes a descending order.

that the performance of the branch-and-bound algorithm is maximized.
These criteria can be ordered in six different ways. Table 4.4 depicts
these six different ways, each associated with a different priority rule
(Rule 3, ...,Rule 8). Notice that all priority rules (Rule 1−Rule 8) share
a final tie breaking rule which dictates the activity with the smaller index
to be positioned first.

4.3.1.2 Branching scheme 1

The nodes in our B&B are denoted by Nu where u is the index of the
node, indicating the sequence in which the nodes are visited. In each
node Nu (except in the root node), we decide to exclude a caset Cki ∈ CE

that is referred to as the target caset. The target caset of node Nu is
denoted by Θ(Nu). The direct father of a node Nu is the node from which
it branched whereas a node’s transitive father is an ancestor (i.e., father
of the father (grandfather), father of the grandfather, etc) of the node.
A node’s set of excluded casets is the set of all target casets of the node,
its direct father and all of its transitive fathers. Since each node has a
one-to-one correspondence with its set of excluded casets, without loss of
generality, we let both the node and its associated set of excluded casets be
represented by the same notation Nu. Excluding a caset is equivalent to
the exclusion of all its realizations. For each nodeNu, the pair (Y Nu , Ȳ Nu)
is the node’s associated pair in Ξ. Notice that a caset may be considered
excluded, before being excluded itself, with the exclusion of a combination
of some other casets.

120

CHAPTER 4. A NOVEL B&B FOR CCRCPSP

Example 4.3. For this example, N0 = ∅ represents the root node, N1 =
{C1

6}, which is branched from N0, is the node where only C1
6 is excluded

and N2 = {C1
6 , C

2
6}, which is branched from N1, represents the node where

both C1
6 and C2

6 are excluded. The root node is the father of N1 and the
only transitive father of N2. The target casets are Θ(N1) = C1

6 and
Θ(N2) = C2

6 for N1 and N2, respectively. Also,

Y N2 = {p1,p3,p4,p5,p6,p8} and

Ȳ N2 = {p2,p7,p9,p10}.

Each node Nu corresponds with a set D(Nu) of effective casets. For
Nu, a caset C is an effective caset if its exclusion from Nu is beneficial and
its associated activity is positioned after the associated activity of Θ(Nu).
The former condition guarantees an improvement in the child’s vector of
durations whereas the latter condition prevents duplicate exclusions of
casets. Since it is not efficient to exclude any ineffective caset, the target
casets of the children of a node must be members of its set of effective
casets.

Example 4.4. The set of effective casets for the root node and for priority
rule Rule 1 consists of all lead casets (D(N0) = {C1

6 , C
1
4 , C

1
5 , C

1
3 , C

1
7 , C

1
2})

and therefore no child of the root node has a non-lead target caset. For
the node N2 = {C1

6 , C
2
6} we have:

D(N2) = {C1
5 , C

2
7 , C

1
2}.

Note that C1
3 and C1

7 are both subsets of Ȳ N2 and thus the exclusions of C1
3

and C1
7 from (Y N2 , Ȳ N2) are not beneficial. Additionally, the exclusions

of C2
3 and C1

4 from (Y N2 , Ȳ N2) are not possible. Since all effective casets
must be both beneficial and possible, D(N2) only consists of C1

5 , C
2
7 and

C1
2 . With similar considerations, we have: D(N4) = D(N5) = D(N6) =
∅.

The branching starts with the root node (N0). The root node, which
corresponds with the situation where no caset has been excluded (N0 = ∅),
is branched into a number of child nodes, each corresponding with the
exclusion of a certain caset (remember that this caset must be a member
of D(N0) and therefore should be both possible and beneficial). Each
of these child nodes is then branched into its own children and so on.
Backtracking happens in a node if all its children have already been visited
or if its set of eligible casets is an empty set. Each node in this B&B tree is

121

4.3. Branch-and-bound

𝐶7
2

Root

𝐶6
1 𝐶4

1 𝐶5
1 𝐶3

1 𝐶7
1 𝐶2

1

𝐶6
2 𝐶5

1 𝐶3
1 𝐶7

1 𝐶2
1

𝐶5
1 𝐶2

1

white

gray

green

1

2

4 5 6

Figure 4.1: Branching scheme 1.

associated with a feasible solution for SAA-RCPSP. Thus, UBNu = sY
Nu

n+1

is an upper bound for the SAA-RCPSP. We denote the best upper bound
found so far by UB∗.

Although we avoid duplicated combinations of excluded casets by in-
troducing the set of effective casets, it is very difficult to modify the
branching scheme such that no duplicated combination of excluded real-
izations occurs. This difficulty stems from the fact that many casets may
contain one or more common realizations. In order to clarify this branch-
ing scheme, we provide an example in which the B&B tree is searched in
depth-first mode.

Example 4.5. Figure 4.1 depicts a part of the B&B tree where branching
scheme 1 is used in a depth-first mode. Each node is represented by a
square. Since all information of a caset cannot be printed for each node
(because of limited space), only its target caset is printed. Also, due to
lack of space, the tree is not complete (the nodes with white background
have not been continued and the nodes with colored background have been
continued).

122

CHAPTER 4. A NOVEL B&B FOR CCRCPSP

The root node is branched into nodes with effective target casets C1
6 , C

1
4 ,

C1
5 , C

1
3 , C

1
7 and C1

2 . Among the children of the root node, node N1 = {C1
6}

is branched first since its target caset’s associated activity is positioned ear-
lier in the AL (which is constructed according priority rule Rule 1 for this
example). Then among the children of N1 = {C1

6}, node N2 = {C1
6 , C

2
6}

is branched first and so on.

All gray nodes are those for which
∑

pl∈Ȳ N πl < α̂ and all green nodes
are those for which

∑
pl∈Ȳ N πl = α̂. For example, consider node N2 =

{C1
6 , C

2
6}. For this node Ȳ N2 = {p2,p7,p9,p10} and

∑
pl∈Ȳ N2 πl = 0.3 <

α̂ (where α̂ = 0.4), therefore its background color is gray. For node N5 =
{C1

6 , C
2
6 , C

2
7}, Ȳ N5 = {p2,p5,p7,p9,p10} and

∑
pl∈Ȳ N5 πl = 0.4 = α̂,

therefore its background color is green. We also compute

sY
N2

= (0, 0, 3, 5, 0, 9, 9, 14, 19, 22)→ UBN5 = 22 and

sY
N5

= (0, 0, 0, 8, 3, 12, 11, 12, 18, 21)→ UBN6 = 21.

Some of the nodes can be dominated by computing a lower bound. In
each node Nu, we compute a lower bound, that is denoted by LBNu . This
lower bound is computed as explained in the following steps:

1. We construct N̂u which represents an extremely pessimistic case.
N̂u initially contains all casets in Nu.

2. Let Cki = Θ(Nu). Add all casets Ck1
i with k1 = k + 1, ..., κi to N̂u

where κi is the largest integer that satisfies the following condition:∑
pl∈Ȳ Nu∪{Ck+1

i ,...,C
κi
i }

πl ≤ α̂.

3. Let activity i be the activity associated with the current node. For
each activity i′ ∈ N that is positioned after activity i in the AL,
add all casets Ck1

i′ with k1 = 1, ..., κi′ to N̂u where κi′ is the largest
integer that satisfies the following condition:∑

pl∈Ȳ Nu∪{C1
i′ ,...,C

κ
i′
i′ }

πl ≤ α̂.

4. LBNu = sY
N̂u

n+1 .

123

4.3. Branch-and-bound

Every node Nu in our B&B tree is dominated if LBNu ≥ UB∗. Notice
that this dominance rule is not considered in the example tree presented
in Figure 4.1.

Example 4.6. Consider node N2 = {C1
6 , C

2
6} in Figure 4.1. We have:

Ȳ N2 = {p2,p7,p9,p10} and
∑

pl∈Ȳ N2 πl = 0.3 < α̂. We compute κ6 =
2, κ4 = 0, κ5 = 1, κ3 = 1, κ7 = 2 and κ2 = 1. Therefore,

N̂2 = {C1
6 , C

2
6 , C

1
5 , C

1
3 , C

1
7 , C

2
7 , C

1
2}

and Ȳ N̂2 = {p2,p5,p7,p8,p9,p10}. We also compute

sY
N2

= (0, 0, 3, 5, 0, 9, 9, 14, 19, 22)→ UBN2 = 22 and

sY
N̂2

= (0, 0, 3, 5, 0, 9, 9, 13, 17, 20)→ LBN2 = 20.

4.3.1.3 Branching scheme 2

Similarly to branching scheme 1, branching scheme 2 also branches over
casets of realizations. Each node is associated with a set of excluded
casets. Without loss of generality, we use the same notation Nu to repre-
sent the uth node in the tree. Branching scheme 2 differs from branching
scheme 1 in two major ways. Firstly, in each node of branching scheme 2,
a set of target casets can be excluded (note that this set can be an empty
set) instead of one single target caset. This set of target casets is denoted
by Ω(Nu). Secondly, each level of the tree is associated with a certain
activity.

The branching starts with the root node. The root node is branched
into a number of child nodes associated with the first activity in the AL,
each corresponding with the exclusion of a certain set of casets (remember
that this set can be an empty set). Let us assume that activity i is the first
activity in the AL. The first child node is associated with the exclusion
of the set of casets {C1

i , ..., C
ζi
i }, the second child node is associated with

the exclusion of the set of casets {C1
i , ..., C

ζi−1
i }, and so on. Finally, the

last node is associated with the exclusion of no caset. Each of these child
nodes is then branched into its own children, which are associated with
the second activity in the AL, and so on. Backtracking happens in a node
if all its children have already been visited, if its set of eligible casets is
an empty set or if the exclusion of its target casets is infeasible.

For branching scheme 2, LBNu is computed based on the following
steps:

124

CHAPTER 4. A NOVEL B&B FOR CCRCPSP

1. We construct N̂u which represents an extremely pessimistic case.
N̂u initially contains all casets in Nu.

2. Let activity i be the activity associated with the current node. For
each activity i′ ∈ N that is positioned after activity i in the AL,
add all casets Ck1

i′ with k1 = 1, ..., κi′ to N̂u where κi′ is the largest
integer that satisfies the following condition:∑

pl∈Ȳ Nu∪{C1
i′ ,...,C

κ
i′
i′ }

πl ≤ α̂.

3. LBNu = sY
N̂u

n+1 .

Similarly to branching scheme 1, every node Nu in our B&B tree is
dominated if LBNu ≥ UB∗. Beware that this dominance rule is also
considered in the tree that is presented in Figure 4.2.

Example 4.7. Figure 4.2 depicts the B&B tree where branching scheme
2 is used in a best-first mode. Each node is represented by a square. The
root node is branched into three nodes: N1, N2 and N3. Among these
three nodes, node N3 is branched first since its lower bound is smaller
than that of the other two nodes. N3 is branched into two nodes: N4 and
N5. Node N4 whose lower bound is larger than the best upper bound (UB∗)
found so far is eliminated from the three, whereas N5 is branched into its
children (N6, N7 and N8). The next node to be branched is N1 because
its lower bound is smaller than the lower bounds of all other unbranched
nodes. The branching continues with the same logic until no unbranched
node with a lower bound smaller than UB∗ exists in the tree.

All white nodes with a line over them are those that are left unbranched
in the tree after the branching stopped. All gray nodes are those for which∑

pl∈Ȳ N πl < α̂ and LBN < UB∗ ≤ UBN and thus they are branched from
and not eliminated. All green nodes are those for which

∑
pl∈Ȳ N πl ≤ α̂

and UBN < UB∗. All red nodes with a line over them are those for which∑
pl∈Ȳ N πl > α̂ or LBN ≥ UB∗ and hence they are eliminated.

4.3.2 Improvements by hashing and listing

Although LBNu is a valid lower bound and thus can be used to prune
our B&B tree, its computation can be costly since it requires calling the
optimization oracle O(·). Therefore, one might be interested in finding a

125

4.3. Branch-and-bound

𝐶4
1

Root

𝐶6
1 ∅

𝐶5
1𝐶5

2

∅

∅𝐶5
1

3

5

876

4

19
23

21
22

19
22

19
22

21
23

23
22

21
22

21
22

𝐶4
1 ∅

109
20
22

inf

𝐶5
1𝐶5

2 ∅𝐶5
1

131211
22
21

21
21

inf

2
𝐶6
1𝐶6

2 20
22

1
white

gray

green

red

𝐿𝐵
𝑈𝐵∗

𝐿𝐵
𝑈𝐵∗

𝐿𝐵
𝑈𝐵∗

𝐿𝐵
𝑈𝐵∗

Figure 4.2: Branching scheme 2.

computationally much cheaper lower bounding approach. Assume pŶ is

a vector of durations for which O(pŶ) has already been solved and sŶ is

its resulting optimal solution. If pŶ ≤ pY
N̂u

, then sŶn+1 ≤ LBNu . In our

B&B algorithm, we call the optimization oracle O(pY
N̂u

) only if for each

pŶ ≤ pY
N̂u

, the inequality sŶn+1 < UB∗ is satisfied. Otherwise, the node
Nu is dominated.

In our algorithm, every time the oracle O(pY) is solved, we store the
pair (pY , sY) both in a hash table and in a linked list. The hash table is
used to avoid calling O(pY) more than once for the nodes with a common
set of excluded realizations whereas the linked list is used for the lower
bound computation. Before calling the optimization oracle to compute
the lower bound, we check all pairs (pY , sY) in the linked list and ensure
that no pair in the linked list is sufficient to conclude the domination of
the node. The members of the linked list are constantly ordered by the
number of times they successfully caused a domination.

126

CHAPTER 4. A NOVEL B&B FOR CCRCPSP

4.4 Computational results

In this section, we report computational results for our B&B algorithm.
We also compare the performance of our B&B algorithm with the given
MILP formulation in Section 4.2 and the branch-and-cut algorithm pro-
posed by Lamas and Demeulemeester (2016). To implement the B&B
algorithm, the MILP formulation and the B&C algorithm, Visual C++
2010 and Cplex 12.5.1 were used. All computational results were obtained
on a computer with Intel(R) Xeon(R) CPU E5-2699 v3 2.30 GHz (2 pro-
cessors, 36 cores), 256GB of RAM and running under Windows Server
2012 R2. It is worth mentioning that in our experiments, at each time
instant, 32 problem instances ran in parallel such that each instance was
using only one thread (core). The remaining four cores were deliberately
kept idle to deal with any possible overhead tasks and thus refrain such
tasks from significantly influencing the results in our experiments.

We chose a memory limit of 10 GB and a time limit of one hour to solve
each instance of the problem using any of the methods. The B&B method
and the B&C method usually required about a few hundreds MB of RAM
(note that the required memory to solve the B&C algorithm is significantly
larger than that of our B&B algorithm). It is worth mentioning that, in
our experiments, these two algorithms never exceeded the memory limit.
The MILP formulation, on the other hand, requires a larger amount of
memory which is often still less than 10 GB. This method exceeded the
memory limit only once in our experiments. If an instance is solved within
the time and memory limits, it is labeled solved, and otherwise unsolved.

4.4.1 Instance generation

All methods are tested on a set of instances that are composed of the
PSPLIB instances. Only instances with 30 non-dummy activities are con-
sidered in this experiment. PSPLIB is a class of instances for the de-
terministic RCPSP (Kolisch and Sprecher, 1997), thus they need to be
modified to suit our problem. The following modifications are applied on
this set of instances: the activity durations p̃i for each non-dummy activ-
ity i follow a discretized beta distribution with shape parameters 2 and 5
that is mapped over the interval [0.75p̂i, 1.625p̂i] where p̂i is the duration
of activity i that is given in the original instance. In order to reduce the
number of experiments, we only consider the instances from the set J30 of
PSPLIB with the following filename syntax: J30X 1 (X = 1, ..., 48). The
random generator’s seed for the instance obtained from J30X 1 equals X.

127

4.4. Computational results

The size of the set P can be extremely large. Any algorithm (includ-
ing MILP solvers) that solves the problem might not be computationally
tractable if P is large. Therefore, we apply a sample average approxi-
mation technique to deal with the problem. We generate several sets of
realizations with different sizes (m = 100, 200, 400, 800 or 1600) as ex-
plained in Lamas and Demeulemeester (2016). We select 1 − α̂ from the
set {0.99, 0.95, 0.90, 0.80}. For each combination of (X,m, (1− α̂)), an in-
stance results and thus the total number of instances is 48× 5× 4 = 960.

4.4.2 Overall results

We run our B&B algorithm on the set of instances described in Sec-
tion 4.4.1 using different branching schemes and different priority rules.
We report the overall results in Table 4.5. In separate experiments, we
evaluate the performance of our B&B algorithm for each combination of
a branching scheme and a priority rule. Branching schemes that are used
in these experiments are branching scheme 1 (BS1) in depth-first mode,
BS1 in a best-first mode and branching scheme 2 (BS2) in a best-first
mode. Notice that we deliberately decide not to include BS2 in a depth-
first mode in our experiments since the order in which the sets of excluded
casets are evaluated in BS2 in a depth-first mode highly resembles that
in BS1 in a depth-first mode. Also, preliminary results indicate that the
required CPU time, the number of nodes and the number of oracle calls
for these two approaches are very close. We use all priority rules described
in Section 4.3.1.1 in these experiments.

Among all branching schemes, branching scheme 1 in a depth-first
mode clearly performs the best. This better performance can be justified
by expressing the importance of tight upper bounds. Obviously, a tight
upper bound in the early stages of searching the tree can help pruning the
low-quality branches. In a best-depth mode, such a tight upper bound is
often obtained very late.

Our B&B algorithm performs best when Rule 3 is used to construct
the activity list. This suggests that the total slack is the most important
criterion, the number of casets is the second important criterion and the
influence factor is the least important criterion. It also suggests that the
choice of priority rule significantly influences the performance of our B&B
algorithm.

The comparison between different settings in Table 4.5 is not very
clear because the number of solved instances varies for different settings.
In order to provide a better comparison between settings, each pair must

128

CHAPTER 4. A NOVEL B&B FOR CCRCPSP

Priority rule
BS1 BS2

Depth-first Best-first Best-first
Rule 1 339.60 (897) 408.98 (884) 422.01 (878)
Rule 2 347.49 (895) 394.20 (885) 389.61 (883)
Rule 3 178.81 (925) 213.08 (919) 207.64 (920)
Rule 4 211.58 (917) 233.99 (914) 238.86 (910)
Rule 5 374.06 (887) 447.94 (874) 469.47 (866)
Rule 6 495.57 (861) 624.88 (831) 656.77 (820)
Rule 7 540.97 (855) 611.26 (838) 620.38 (831)
Rule 8 536.24 (856) 608.88 (838) 615.14 (836)

Table 4.5: Average CPU times (in seconds) and number of solved instances
within the time limit (out of 960) for different choices of priority
rules and different branching schemes.

be separately compared in more detail. In such a comparison, one should
only consider the instances that are solved to optimality in the settings un-
der question. In Table 4.6, we compare two different settings, namely the
combination of BS1 and Rule 1 (also denoted by the pair (BS1,Rule 1))
in a depth-first mode and (BS1,Rule 3) also in a depth-first mode. Let
CPUI(BS1,Rule 1) be the CPU time required to optimally solve instance
I using the former setting and CPUI(BS1,Rule 3) be the CPU time re-
quired to optimally solve instance I using the latter setting. We com-
pute the average percentage deviation of the required CPU time using
(BS1,Rule 3) in a depth-first mode from the required CPU time using
(BS1,Rule 1) in a depth-first mode as follows:

avg

{
CPUI(BS1,Rule 3)− CPUI(BS1,Rule 1)

CPUI(BS1,Rule 1)
× 100%

}
.

According to the results that are presented in Table 4.6, for every choice of
1− α̂ and m, (BS1,Rule 3) performs better than (BS1,Rule 1) (negative
average percent deviation). We notice that by increasing the number of re-
alizations (m) and also by decreasing the confidence level (1−α̂), the asso-
ciated average percent deviation decreases. In other words, by increasing
the number of realizations and also by decreasing the confidence level, the
difference between the performances of (BS1,Rule 3) and (BS1,Rule 1)
becomes more significant. For instance, when 1− α̂ = 0.95 and m = 200,
(BS1,Rule 3) performs about two times faster than (BS1,Rule 1) whereas

129

4.4. Computational results

1− α̂ m
100 200 400 800 1600

0.99 -8.91 (48) -7.21 (48) -39.37 (48) -32.65 (48) -47.94 (48)
0.95 -42.27 (48) -53.72(47) -61.07 (47) -65.85 (46) -78.26 (44)
0.90 -48.64 (46) -70.54 (47) -71.63 (46) -65.44 (44) -80.60 (43)
0.80 -69.19 (45) -83.97 (45) -74.74 (40) -85.25 (37) -94.18 (30)

Table 4.6: The average percentage deviation of the required CPU time using
(BS1,Rule 3) in a depth-first mode from the required CPU time
using (BS1,Rule 1) in a depth-first mode (in percentage) and the
number of instances solved in both settings (out of 48) for different
choices of 1− α̂ and m.

when 1− α̂ = 0.80 and m = 1600, (BS1,Rule 3) performs about 17 times
faster than (BS1,Rule 1).

Among all combinations, (BS1,Rule 3) in a depth-first mode performs
the best. In the remainder of this chapter, we only report the results
of our B&B for this combination and the results associated with other
combinations are ignored. Note that in the following subsections, for the
sake of simplicity, we mention no setting and instead we simply use the
notion ‘our B&B’.

4.4.3 Detailed results

In Table 4.7, for each pair ((1 − α̂),m), we report the number of in-
stances that are solved within the time limit (Solved), the average and
maximum CPU times (avg(CPU) and max(CPU)), the average number
of casets (avg(|CE |)), the average number of nodes visited in the tree
(avg(NN)) and the average number of times the optimization oracle is
called (avg(OC)).

We observe that by decreasing 1 − α̂ from 0.99 to 0.80 and/or by
increasing the number of realizations (m), the average number of casets,
the average CPU times, the average number of nodes and the average
number of oracle calls are often increased whereas the average number of
solved instances is decreased or remains unchanged.

We report that the average number of oracle calls is increased al-
most linearly by increasing the number of realizations, which is the main
strength of this approach. However, the average number of oracle calls
is increased exponentially with an increase in the number of casets (see
Figure 4.3).

130

CHAPTER 4. A NOVEL B&B FOR CCRCPSP

1− α̂ m Solved
CPU

avg(|CE |) avg(NN) avg(OC)
avg max

0.99

100 48 2.71 118.56 6.94 6.73 7.73
200 48 3.29 133.55 10.38 16.33 14.40
400 48 18.95 859.73 14.46 45.38 28.83
800 48 22.76 943.68 17.56 136.98 66.63
1600 48 72.04 2994.27 21.10 243.94 84.71

0.95

100 48 32.61 1360.92 22.19 113.96 71.73
200 48 60.56 2611.33 26.02 327.60 161.38
400 47 95.85 3600.00 30.35 1076.27 380.25
800 46 171.39 3600.00 33.98 3031.90 825.19
1600 46 206.83 3600.00 37.19 5484.21 1290.60

0.90

100 47 101.44 3600.00 31.75 732.35 358.17
200 47 110.79 3600.00 36.42 1893.04 729.15
400 46 184.42 3600.00 40.46 5725.63 1586.52
800 46 263.40 3600.00 44.27 18093.48 4176.90
1600 45 296.78 3600.00 48.19 26253.33 5392.23

0.80

100 46 258.06 3600.00 44.42 6028.85 2270.23
200 46 212.91 3600.00 49.08 17682.98 4882.92
400 43 402.35 3600.00 53.58 39607.83 9144.67
800 42 509.95 3600.00 57.79 136760.71 24427.54
1600 42 549.09 3600.00 61.98 156366.33 27565.60

Table 4.7: The detailed computational results for our B&B algorithm.

4.4.3.1 Quality of the lower bound

One of the main features of our B&B algorithm is the lower bound com-
putation. To show the strength of the proposed lower bound, we report
the average deviation of the lower bound in the root node from the objec-
tive value of the best found (optimal) solution in Table 4.8. This average
deviation is computed as follows:

avg

{
LBN0 − UB∗

UB∗
× 100%

}
.

Notice that the computation of the lower bound in the root node is exactly
the same for the two branching schemes. The results in Table 4.8 suggest
that by decreasing the confidence level and by increasing the number of
realizations, the quality of the lower bound is generally decreased.

4.4.3.2 Impacts of hashing and listing

In Section 4.3.2, we discussed two improvement techniques, namely ex-
ploiting a hash table (HT) and a linked list (LL). Table 4.9 demonstrates

131

4.4. Computational results

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

|CE |

lo
g(
O
C
)

Figure 4.3: Logarithm of number of oracle calls vs. number of casets.

1− α̂ m
100 200 400 800 1600

0.99 -2.23 -2.63 -3.16 -3.26 -3.17
0.95 -5.86 -5.71 -6.28 -6.12 -6.35
0.90 -7.68 -8.39 -8.15 -8.25 -8.25
0.80 -10.69 -11.31 -11.06 -11.44 -11.67

Table 4.8: The average percent deviation between the lower bound and the
objective value of the best found (or optimal) solution for different
choices of 1− α̂ and m.

their effects on the performance of our B&B algorithm. The first row
represents the setting in which both the hash table and the linked list are
exploited. The second and third row represent the settings in which ei-
ther of the two improving techniques is not exploited. Finally, the last low
represents the setting in which none of them is exploited. Based on these
results, we notice that implementing the hash table slightly improves the

132

CHAPTER 4. A NOVEL B&B FOR CCRCPSP

Setting Solved (out of 960) avg(CPU) avg(OC)

B&B 925 178.81 4173.27
B&B - HT 925 180.81 4514.47
B&B - LL 913 239.61 19483.30

B&B - HT - LL 913 241.19 19686.32

Table 4.9: The effect of implementing the hash table (HT) and/or the linked
list (LL) on our B&B algorithm.

1− α̂ m
3200 6400 12800 25600 51200

0.99 35.66 (48) 92.69 (48) 134.54 (47) 160.03 (47) 245.81 (45)
0.95 247.56 (45) 347.23 (44) 388.62 (45) 381.67 (44) 413.95 (44)
0.90 406.65 (44) 484.43 (44) 517.01 (42) 675.13 (41) 737.77 (40)
0.80 697.72 (40) 846.37 (39) 946.33 (38) 1029.67 (36) 1037.80 (35)

Table 4.10: The average CPU time and the number of instances solved (out
of 48) for different choices of 1− α̂ and large m values.

performance of our B&B algorithm whereas the improvement resulting
from the implementation of the linked list is significant.

4.4.3.3 Results for instances with a large number of realizations

Readers may be interested in the performance of our B&B algorithm
when larger sets of realizations are considered. In this part, we present
the results of an additional set of instances. This set is generated sim-
ilarly to the set of instances introduced in Section 4.4.1, except that
m = 3200, 6400, 12800, 25600 or 51200. Table 4.10 reports the average
CPU times and the numbers of instances solved for different choices of
1 − α̂ and these large m values. We notice that our B&B algorithm can
solve 35 (out of 48) instances even for the most difficult setting, i.e., the
setting where m = 51200 and 1 − α̂ = 0.80. The main reason of such
a good performance lies in the way the casets are introduced. Having
a fixed range of integer numbers, the number of casets remains almost
constant by increasing the number of realizations. Note that the num-
ber of oracle calls and as such the required CPU times are exponentially
increased only by increasing the number of casets, as it has been shown
in Figure 4.3. Therefore, because the number of casets remains almost
constant by increasing the number of realizations, we conclude that in-
creasing the number of realizations does not lead to a significant increase
in CPU times.

133

4.4. Computational results

1− α̂ m Solved
CPU

avg(|CE |) avg(NN) avg(OC)
avg max

0.99

100 48 3.99 166.937 13.15 12.52 13.50
200 48 22.70 1007.54 20.77 45.50 41.33
400 48 89.79 3490.83 29.19 238.63 184.52
800 47 120.67 3600.00 36.29 1274.45 659.21
1600 46 249.27 3600.00 42.42 6458.27 2583.79

0.95

100 47 109.14 3600.00 42.06 835.25 628.56
200 45 313.76 3600.00 52.75 5612.54 2950.17
400 44 480.87 3600.00 62.13 54531.02 19719.38
800 39 842.35 3600.00 69.25 218721.46 50665.90
1600 36 1178.17 3600.00 75.50 399935.52 85520.31

0.90

100 45 313.66 3600.00 61.23 12494.23 6862.81
200 42 570.21 3600.00 73.31 74333.40 27812.06
400 34 1274.74 3600.00 82.67 324515.38 86804.75
800 33 1294.26 3600.00 91.17 441609.19 92741.42
1600 28 1582.64 3600.00 97.98 576703.73 115854.06

0.80

100 38 903.09 3600.00 85.13 175219.60 67898.67
200 34 1266.76 3600.00 97.88 330257.13 98129.88
400 29 1591.19 3600.00 108.33 522442.42 126655.79
800 27 1700.57 3600.00 116.96 653758.15 128094.58
1600 24 1905.06 3600.00 124.79 935444.83 167067.04

Table 4.11: The detailed computational results for our B&B algorithm ran on
instances with medium variances.

4.4.3.4 Results for instances with medium and high variances

The activity durations of the instances introduced in Section 4.4.1 are
generated from the range [0.75p̂i, 1.625p̂i] which represents a low vari-
ance. In most papers that are dealing with project scheduling where
activity durations are stochastic, two wider ranges are also used: a range
of [0.5p̂i, 2.25p̂i] which represents a medium variance in activity durations
and a range of [0.25p̂i, 2.875p̂i] which represents a high variance in activity
durations. We introduce two additional sets of instances that are gener-
ated similarly to the set of instances introduced in Section 4.4.1, except
that the medium and the high variance ranges are used to generate the
activity durations. Tables 4.11 and 4.12 show the detailed computational
results for our B&B algorithm ran on instances with medium and high
variances, respectively. As expected, by increasing the range (variance),
the number of casets and as such the CPU times are increased whereas
the number of solved instances is decreased. It is interesting to see that
our B&B algorithm can also solve most of the instances with medium

134

CHAPTER 4. A NOVEL B&B FOR CCRCPSP

1− α̂ m Solved
CPU

avg(|CE |) avg(NN) avg(OC)
avg max

0.99

100 48 11.08 502.98 15.31 14.42 15.35
200 48 29.25 1189.15 26.15 68.00 65.52
400 47 141.76 3600.00 39.67 576.04 495.94
800 45 319.38 3600.00 50.75 4691.56 2697.77
1600 43 442.91 3600.00 62.40 26714.71 10894.48

0.95

100 47 131.68 3600.00 53.27 1199.21 965.15
200 43 416.64 3600.00 70.67 12984.54 7192.79
400 36 957.54 3600.00 87.29 162026.98 63291.98
800 31 1404.69 3600.00 100.33 357048.48 104380.56
1600 27 1632.23 3600.00 112.33 529853.10 126483.63

0.90

100 43 470.28 3600.00 81.10 20620.33 13079.69
200 36 1053.60 3600.00 100.50 191257.79 82103.69
400 27 1769.10 3600.00 117.21 427891.35 141403.94
800 25 1880.22 3600.00 129.98 615474.25 158701.44
1600 21 2274.00 3600.00 142.96 851616.31 183599.63

0.80

100 32 1408.39 3600.00 118.40 227325.42 109373.13
200 22 2090.18 3600.00 138.65 462194.48 170729.17
400 18 2440.46 3600.00 155.69 645457.58 195175.23
800 16 2653.74 3600.00 169.06 910299.63 216549.46
1600 13 2892.69 3600.00 181.88 1111028.08 232467.46

Table 4.12: The detailed computational result for our B&B algorithm ran on
instances with high variances.

variance and a reasonably large number of instances with high variance
to optimality within the time limit.

4.4.4 Comparison with other methods

We compare our B&B algorithm with the mathematical formulations pro-
posed in Section 4.2 and the B&C algorithm proposed by Lamas and De-
meulemeester (2016). For each pair (1 − α̂,m), Table 4.13 reports the
number of solved instances within different time limits: 10 seconds (10s),
1 minute (1m), 10 minutes (10m) and 1 hour (1h). We observe that our
B&B algorithm clearly outperforms the mathematical formulation and
the B&C algorithm in all settings.

As we decrease (1 − α̂), the number of solved instances is decreased
for all three methods. The same behavior is noticed when we increase the
number of realizations. Intriguingly we notice that within 10 seconds, our
B&B algorithm can solve more instances than the number of instances
that are solved within one hour by the mathematical formulation. Also
within one minute, our B&B algorithm can solve more instances than

135

4.5. Discussion: general CCP problem

1− α̂ m
B&B SAA-RCPSP-MILP2 B&C

10s 1m 10m 1h 10s 1m 10m 1h 10s 1m 10m 1h

0.99

100 47 47 48 48 26 30 33 38 39 44 47 47
200 47 47 48 48 26 30 32 35 38 43 47 47
400 46 47 47 48 24 29 32 36 38 40 46 46
800 43 46 47 48 22 28 31 34 33 39 43 46
1600 43 45 47 48 19 30 32 35 28 37 42 46

0.95

100 44 46 47 48 21 30 30 37 35 39 43 46
200 42 45 47 48 19 30 31 36 30 39 42 44
400 41 43 47 47 18 29 32 36 24 34 40 43
800 42 43 45 46 9 24 32 37 16 27 38 40
1600 41 43 44 46 6 25 29 32 6 22 31 39

0.90

100 41 44 46 47 17 28 31 37 28 38 42 44
200 42 42 46 47 10 25 31 35 23 32 38 42
400 40 43 45 46 8 23 31 33 12 26 38 40
800 40 41 43 46 5 19 31 32 9 19 29 39
1600 36 41 43 45 0 10 26 31 0 7 23 32

0.80

100 39 41 44 46 9 22 30 32 18 29 40 42
200 33 41 44 46 7 22 30 31 10 25 35 39
400 32 38 42 43 5 13 28 29 4 15 27 36
800 30 35 40 42 1 5 23 28 0 8 21 29
1600 31 33 40 42 0 4 10 24 0 0 13 19

Table 4.13: The number of instances solved to optimality for different time
limits (10 seconds, 1 minute, 10 minutes and 1 hour), different
methods and different choices of 1− α̂ and large m values.

the number of instances that are solved within one hour using the B&C
algorithm. More interestingly, in many very difficult settings (for example
the setting where (1− α̂) = 0.80 and m = 1600), the number of instances
that are solved within 10 seconds by our B&B algorithm is much more
than the number of instances that are solved within one hour using the
B&C algorithm.

As is also clear in the table, B&C is generally performing better than
the MILP formulation. However, when 1 − α̂ ≤ 0.90 and m ≥ 400 the
MILP formulation sometimes performs better, specially for the smaller
time limits. This somewhat unexpected result might be because of the
pre-processing steps in the B&C algorithm.

4.5 Discussion: general CCP problem

Although our proposed B&B algorithm is applied to solve the SAA-
RCPSP, it can be used to solve any CCP problem with discrete ran-
dom rhs vector provided that an optimal solution methodology exists for
its deterministic counterpart. For instance, consider the classical trans-

136

CHAPTER 4. A NOVEL B&B FOR CCRCPSP

portation problem with random discrete demand vector. One could use
the same B&B algorithm proposed in Section 4.3 to solve the chance-
constrained version of the classical transportation problem. In this case,
O(.) should be an oracle that optimally solves the deterministic trans-
portation problem.

4.6 Summary and conclusion

In this chapter, we propose a novel B&B algorithm that solves the SAA-
RCPSP in a much more efficient manner than the methods that are al-
ready existing in the literature. The goal in SAA-RCPSP is to select a
subset of realizations, for which the optimal solution must be feasible,
such that the resulting confidence level is at least (1 − α̂). Instead of
branching over realizations, we branch over casets of realizations and thus
the complexity of the method is a function of the number of casets rather
than a function of the number of realizations. If the activity realizations
are discrete, then the number of casets usually is increased only slightly
by increasing the number of the realizations.

In our experiments, we tested different priority rules for activities,
based on which the B&B tree is constructed. We noticed that, among sev-
eral sorting criteria, sorting activities based on smaller total slack times
significantly improves the performance of our B&B algorithm. The per-
formance analyses show that the efficiency of the B&B algorithm is mainly
due to the concepts of casets, since the number of casets increases mod-
erately as we increase the number of realizations. The latter property,
however, holds if the number of realizations is significantly larger than
the numbers of activity modes.

We ran our B&B algorithm together with a MILP formulation and
a B&C algorithm on benchmark instances with a size of 30 activities.
The B&B algorithm outperforms the MILP formulation and the B&C
algorithm in terms of computational times as well as in terms of the
number of solved instances within the time limit.

137

Part II

A generic single machine
scheduling problem

139

Chapter 5

Introducing GSMSP: a single-machine schedul-
ing problem with time windows and prece-
dence constraints

The beauty of mathematics only shows itself to more patient
followers.

- Maryam Mirzakhani

Scheduling problems arise in production planning (Sule, 2007), in bal-
ancing processes (Shirazi et al., 1995), in telecommunication (Nemeth
et al., 1997) and more generally in all situations in which scarce resources
are to be allocated to jobs over time (Pinedo, 2008). Depending on the
application, the corresponding scheduling problem can be such that each
job must be processed within a given time window, where the lower bound
(release date or ready time) of this time window represents the earliest
start of the execution of the job and the upper bound (deadline) corre-
sponds with the latest acceptable completion time, for instance the ulti-
mate delivery time agreed upon with the customer (Gordon et al., 1997;

This chapter together with Chapters 6 and 7 constitute our paper that is published
in Journal of Scheduling (Davari et al., 2016).

141

5.1. Literature review

Pan and Shi, 2005; Xu and Parnas, 1990). For some of these applica-
tions, only release dates or only deadlines are considered (Jouglet et al.,
2004; Pan, 2003; Posner, 1985; Tanaka and Fujikuma, 2012). In practice,
a job often also needs to be processed before or after other jobs, e.g., due
to tool or fixture restrictions or for other case-dependent technological
reasons, which leads to precedence constraints (Lawler, 1978; Potts and
Van Wassenhove, 1985; Tanaka and Sato, 2013). Finally, the contract
with a client can also contain clauses that stipulate that penalties must
be paid when the execution of a job is not completed before a reference
date (due date) (Abdul-Razaq and Potts, 1988; Dyer and Wolsey, 1990;
Ibaraki and Nakamura, 1994; Jouglet et al., 2004; Talla Nobibon and Leus,
2011; Tanaka and Fujikuma, 2012).

In this chapter, we study a generic single-machine scheduling problem
(which is referred to as GSMSP) with total weighted tardiness (TWT)
penalties. In the standard three-field notation introduced by Graham
et al. (1979), GSMSP can be denoted as 1|rj , δj , prec|

∑
wjTj : the exe-

cution of each job is constrained to take place within a time window, and
we assume the corresponding deadline to be greater than or equal to a
due date, which is the reference for computing the tardiness of the job.
The scheduling decisions are also subject to precedence constraints.

The remainder of this chapter is structured as follows. In Section 5.1
we briefly summarize the state of the art. In Section 5.2 we provide some
definitions and a formal problem statement and in Section 5.3 we propose
two different integer programming formulations. In Section 5.4 we explain
the instance generation. Section 5.5 presents computational results and
Section 5.6 is devoted to summary and conclusions.

5.1 Literature review

Abdul-Razaq et al. (1990) survey different branch-and-bound (B&B) al-
gorithms for 1||

∑
wjTj . A benchmark algorithm is the B&B procedure

of Potts (1985); an older reference is Held and Karp (1962), who present
a dynamic programming (DP) approach. Abdul-Razaq and Potts (1988)
introduce a DP-based approach to obtain tight lower bounds for the gener-
alized version of the problem where the cost function is piecewise linear.
They examine their lower bounds in a B&B algorithm and solve small
instances (with at most 25 jobs) to optimality. Ibaraki and Nakamura
(1994) extend their work and construct an exact method, called Successive
Sublimation Dynamic Programming (SSDP), which solves medium-sized

142

CHAPTER 5. INTRODUCING GSMSP

instances (with up to 50 jobs). Tanaka et al. (2009) improve the SSDP
of Ibaraki and Nakamura (1994) and succeed in solving reasonably large
instances (with up to 300 jobs) of 1||

∑
wjTj within acceptable runtimes.

Single-machine scheduling for TWT with (possibly unequal) release
dates (1|rj |

∑
wjTj) has also been studied by several authors. Akturk and

Ozdemir (2000, 2001) and Jouglet et al. (2004) develop B&B algorithms
that solve small instances. Van den Akker et al. (2010) propose a time-
indexed formulation and a method based on column generation to solve
this problem with identical processing times. Tanaka and Fujikuma (2012)
present an SSDP algorithm that can solve instances of 1|rj |

∑
wjTj with

up to 100 jobs.
There are only few papers dealing with single-machine scheduling with

deadlines and/or precedence constraints. Among these, we cite Posner
(1985) and Pan (2003), who propose B&B algorithms for 1|δj |

∑
wjCj ,

Pan and Shi (2005), who develop a B&B algorithm to solve 1|rj , δj |∑
wjCj , Lawler (1978) and Potts and Van Wassenhove (1985), who present

B&B algorithms to solve 1|prec|
∑
wjCj , and Tang et al. (2007), who

propose a hybrid backward and forward dynamic-programming-based La-
grangian relaxation to compute upper and lower bounds for 1|prec|

∑
wjTj .

Tanaka and Sato (2013) also propose an SSDP algorithm to solve a gen-
eralization of 1|prec|

∑
wjTj (piecewise linear cost function). To the best

of our knowledge, scheduling problems with release dates, deadlines and
precedence constraints have not yet been studied in the literature. The
goal of this chapter and the following two chapters is to fill this gap and to
propose efficient B&B algorithms that solve all the foregoing subproblems
within limited computation times.

5.2 Problem description

The jobs to be scheduled are gathered in set N = {1, 2, . . . , n}. Job i is
characterized by a processing time pi, a release date ri, a due date di,
a deadline δi, and a weight wi, which represents the cost per unit time
of delay beyond di. Jobs can neither be processed before their release
dates nor after their deadlines (0 ≤ ri ≤ δi). Precedence constraints are
represented by a graph G = (N ′, A), where N ′ = N ∪ {0, n + 1}, with 0
a dummy start job and n + 1 a dummy end. Each arc (i, j) ∈ A implies
that job i must be executed before job j (job i is a predecessor of job j).
We will assume that G(N ′, A) is its own transitive reduction, that is, no
transitive arcs are included in A. Let Pi be the set of all predecessors

143

5.2. Problem description

of job i in A (Pi = {k|(k, i) ∈ A}) and Qj the set of successors of job i

(Qi = {k|(i, k) ∈ A}). We also define an associated graph Ĝ = (N ′, Â) as
the transitive closure of G. We assume that P0 = Qn+1 = ∅, and that all
jobs are successor of 0 and predecessor of n+ 1 in Ĝ (apart from the jobs
themselves).

Throughout this chapter and also the next two chapters, we use the
term ‘sequencing’ to refer to ordering the jobs (establishing a permutation)
whereas ‘scheduling’ means that start (or end) times are determined. We
denote by π an arbitrary sequence of jobs, where πk represents the job at
the kth position in that sequence. Let π−1(i) be the position of job i in π;
we only consider sequences for which π−1(i) < π−1(j) for all (i, j) ∈ A.
Value Ci is the completion time of job i. Each sequence π implies a
schedule, as follows:

Cπi =

{
max{rπi , Cπi−1

}+ pπi if i > 1

rπi + pπi if i = 1
.

Equivalently, the end of job i according to sequence π can also be written
as Ci(π). We denote by D the set of all feasible permutations, where a
permutation π is feasible (π ∈ D) if and only if it generates a feasible
schedule, which means that

rπi + pπi ≤ Cπi ≤ δπi ∀i ∈ N.

Note that the set D may be empty.
The weighted tardiness associated with the job at the ith position

in the sequence π is given by W (πi) = wπi (Cπi − dπi)
+

, where x+ =
max {0, x}. A conceptual formulation of the problem GSMSP studied in
this chapter is given in the following:

GSMSP : min
π∈D

TWT(π) =

n∑
i=1

W (πi). (5.1)

This problem is at least as hard as 1||
∑
wiTi, which is known to be

strongly NP-hard (Lawler, 1977; Lenstra et al., 1977; Pinedo, 2008). A
stronger result is that the mere verification of the existence of a feasible
schedule that respects a set of ready times and deadlines is already NP-
complete (Garey and Johnson, 1979, problem SS1, page 236); we do not,
however, incorporate the feasibility check as a formal part of the problem
statement.

144

CHAPTER 5. INTRODUCING GSMSP

Job i pi ri di δi wi
Job 1 2 3 10 14 1
Job 2 3 4 11 13 2
Job 3 4 3 8 15 3
Job 4 2 2 6 9 1

Table 5.1: Job characteristics.

0 1 2 3

4

5

Figure 5.1: Precedence graph G(N ′, A).

Example. Consider the following instance of GSMSP with n = 4 jobs.
The processing times, release dates, due dates, deadlines and weights
of the jobs are given in Table 5.1. The graph representing the prece-
dence constraints is depicted in Figure 5.1, with arc set A = {(0, 1),
(0, 4), (1, 2), (2, 3), (3, 5), (4, 5)}.

An optimal solution to this instance is π = (4, 1, 2, 3), which leads to
the schedule C1 = 6, C2 = 9, C3 = 13 and C4 = 4. The objective value is
w4 × 0 + w1 × 0 + w2 × 0 + w3 × (13− 8) = 3× 5 = 15.

5.3 Mathematical formulations

The conceptual formulation for GSMSP presented in the previous section
is not linear, therefore it cannot be used by a standard (linear) mixed-
integer programming (MIP) solver. In this section, we propose an Assign-
ment Formulation (ASF) and a Time-Indexed Formulation (TIF) for the
problem. These formulations are adaptations of those presented in Keha
et al. (2009) and Talla Nobibon and Leus (2011).

5.3.1 Assignment formulation

We use binary decision variables xis ∈ {0, 1} (i ∈ N, s ∈ {1, 2, . . . , n}),
which identify the position of jobs in the sequence so that xis is equal
to 1 if job i is the sth job processed and equal to 0 otherwise. In other

145

5.3. Mathematical formulations

words, xis = 1 if and only if πs = i. We also use additional continuous
variables Ti ≥ 0 representing the tardiness of job i ∈ N and continuous
variables τs ≥ 0 representing the machine idle time immediately before
the execution of the sth job. The MIP formulation is given by

ASF : min

n∑
i=1

wiTi (5.2)

subject to
n∑
s=1

xis = 1 ∀i ∈ N (5.3)

n∑
i=1

xis = 1 ∀s ∈ {1, 2, . . . , n} (5.4)

n∑
s=1

xiss ≤
n∑
t=1

xjtt− 1 ∀(i, j) ∈ A (5.5)

τs ≥
n∑
i=1

xisri −
s−1∑
t=1

(
n∑
i=1

(xitpi) + τt

)
∀s ∈ N (5.6)

s∑
t=1

τt +

s−1∑
t=1

n∑
i=1

pixit +

n∑
i=1

((pi − δi)xis) ≤ 0

∀s ∈ N (5.7)

Ti ≥
s∑
t=1

τt +

s−1∑
t=1

n∑
j=1

pjxjt + pi − di − (1− xis)Mi

∀i ∈ N, s ∈ N (5.8)

xis ∈ {0, 1}, τs, Ti ≥ 0 ∀i ∈ N, s ∈ {1, 2, . . . , n}. (5.9)

The objective function (5.2) is a reformulation of (5.1). The set of con-
straints (5.3) ensures that all jobs are executed. Constraints (5.4) check
that each position in the sequence is occupied by exactly one job. The
set of constraints (5.5) enforces the precedence restrictions. The set of
equations (5.6) computes the idle time of the machine between the jobs in
positions s−1 and s, and ensures that each job is not started before its re-
lease date. In this set of constraints,

∑s−1
t=1 (

∑n
i=1 (xitpi) + τt) equals the

completion time of the (s − 1)th job. Constraints (5.7) ensure that each

job is not completed after its deadline, where
∑s
t=1 τt +

∑s−1
t=1

∑n
i=1 pixit

is the start time of the sth job. Constraints (5.8) compute the correct

146

CHAPTER 5. INTRODUCING GSMSP

value of the tardiness of job i, with Mi = δi − di the maximum tardiness
of job i.

A variant of ASF is obtained by replacing the set of constraints (5.5)
by the following:

n∑
s=v

xis +

v∑
s=1

xjs ≤ 1 ∀(i, j) ∈ A,∀v ∈ {1, . . . , n}. (5.10)

We refer to this alternative formulation as ASF′. We have the following
result:

Lemma 5.1. ASF′ is stronger than ASF.

Proof. Consider the set of constraints (5.10). For each (i, j) ∈ A, the
following inequalities hold:

xi1 + · · ·+ xin ≤ 1− xj1 = xj2 + · · ·+ xjn

xi2 + · · ·+ xin ≤ 1− xj1 − xj2 = xj3 + · · ·+ xjn

...

xi(n−1) + xin ≤ 1− xj1 − · · · − xj(n−1) = xjn

xin ≤ 1− xj1 − · · · − xjn = xj1 + · · ·+ xjn − 1

By adding the above inequalities, we obtain

xi1 + 2xi2 + 3xi3 + · · ·+ nxin ≤
xj1 + 2xj2 + 3xj3 + · · ·+ nxjn − 1.

This is exactly the associated constraint in the set of constraints (5.5).
As a result, the solution space of the LP relaxation of ASF′ is included in
that of ASF. To show that the inclusion is strict, consider the following
fractional values for the decision variables corresponding with a couple
(i, j) ∈ A: xi1 = xi5 = 0.5 and xj4 = 1. These values can be seen to
respect the weak but not the strong formulation.

The number of constraints in (5.10) is much higher than in (5.5). As
a result, the additional computational effort needed to process this higher
number of constraints might offset the improvement of a stronger bound,
and we will empirically compare the performance of the two variants in
Section 5.5.

147

5.3. Mathematical formulations

5.3.2 Time-indexed formulation

Let TS (respectively TE) be a lower (respectively upper) bound on the
time the execution of any job can be completed; we compute these values
as TS = min{ri + pi|i ∈ N} and TE = max{δi|i ∈ N}. The time-indexed
formulation uses binary decision variables xit ∈ {0, 1}, for i ∈ N and
TS ≤ t ≤ TE , where xit = 1 if job i is completed (exactly) at time t and
xit = 0 otherwise. We also introduce the set of parameters Tit = (t−di)+,
representing the tardiness of job i when it finishes at time t. The time-
indexed formulation is given by

TIF : min

n∑
i=1

δi∑
t=ri+pi

wiTitxit (5.11)

subject to

n∑
i=1

min{δi,t+pi−1}∑
s=max{t,ri+pi}

xis ≤ 1 ∀t, TS ≤ t ≤ TE (5.12)

δi∑
t=ri+pi

xit = 1 ∀i ∈ N (5.13)

δi∑
s=ri+pi

xiss ≤
δj∑

t=rj+pj

xjtt− pj ∀(i, j) ∈ A (5.14)

xit ∈ {0, 1} i ∈ N, ri + pi ≤ t ≤ δi. (5.15)

The set of constraints (5.12) eliminates the parts of the solution space
where the jobs overlap. The constraint set (5.13) ensures that all jobs
are scheduled exactly once. We enforce precedence constraints in the
formulation using the set of constraints (5.14).

Similarly as for the assignment formulation, we introduce an alterna-
tive formulation TIF′ by replacing the set of constraints (5.14) by the
following:

δi∑
s=t

xis +

t−pi∑
s=rj+pj

xjs ≤ 1 (5.16)

∀(i, j) ∈ A;∀t,max{ri, rj + pj}+ pi ≤ t ≤ min{δi, δj + pi}.

Lemma 5.2. (From Artigues et al., 2008; Christofides et al., 1987) TIF′

is stronger than TIF.

148

CHAPTER 5. INTRODUCING GSMSP

As explained for the assignment formulation, the performance of the
new formulation is not necessarily better. In fact, it can be much worse
than TIF, since in a time-indexed formulation the number of additional
constraints is quite large (pseudo-polynomial).

5.4 Instance generation

To the best of our knowledge, there are no benchmark sets of instances
of problem GSMSP available, and so we have generated our own set of
instances, which is referred to as Ins. The set Ins consists of the two
disjoint subsets InsS and InsL): InsS contains instances with small pro-
cessing times and InsL holds instances with large processing times. The
values pi (1 ≤ i ≤ n) are sampled from the uniform distribution U [1, α],
where α = 10 for InsS and α = 100 for InsL. For each subset, we generate
instances with |N | = n = 10, 20, 30, 40 and 50 jobs. Release dates ri
are drawn from U [0, τP], where P =

∑
i∈N pi and τ ∈ {0.0, 0.5, 1.0}. Due

dates di are generated from U [ri+pi, ri+pi+ρP] with ρ ∈ {0.05, 0.25, 0.50}
and weights wi stem from U [1, 10]. Up to here our generation is based
on the instance generation procedure of Tanaka and Fujikuma (2012).
Our modifications pertain to the generation of deadlines and precedence
relations among jobs. Deadlines are chosen from U [di, di + φP] with
φ ∈ {1.00, 1.25, 1.50}.

The addition of precedence constraints may lead to the generation of
many instances with no feasible solution. For this reason, for each instance
we first construct a feasible solution without considering precedence con-
straints (using the branch-and-bound algorithm proposed in Chapter 7).
Next, the jobs are re-indexed according to the job order in this feasi-
ble solution. If no feasible solution exists even without precedence con-
straints, we use the original indices. Subsequently, a precedence graph
is created using the RanGen software (Demeulemeester et al., 2003) with
OS ∈ {0.00, 0.25, 0.50, 0.75}, where OS is the order strength of the graph
(a measure for the density of the graph). For any instance, if a fea-
sible solution exists without precedence constraints, then the addition of
precedence constraints will never render it infeasible because RanGen only
generates arcs from lower-indexed to higher-indexed jobs.

In conclusion, for each combination of (α, n, τ, ρ, φ,OS), four instances
are generated; the total number of instances is thus 2×5×3×3×3×4×4 =
4320.

149

5.5. Computational results

α Method
n

10 20 30

10

ASF 0.81 – –
ASF′ 0.80 – –
TIF 0.43 2.02 53.47 (3)
TIF′ 0.64 2.97 88.17

(12)

100

ASF 0.92 – –
ASF′ 0.95 – –
TIF 6.54 – –
TIF′ 21.78 – –

Table 5.2: Average CPU times (in seconds) and number of unsolved instances
within the time limit (out of 432) for the MIP formulations run on
Ins with n = 10, 20 and 30.

5.5 Computational results

In our computational experiments, CPlex 12.3 is used to solve the MIP
formulations. All computational results were obtained on a laptop Dell
Latitude with 2.6 GHz Core(TM) i7-3720QM processor, 8GB of RAM,
running under Windows 7. In all our experiments, the time limit is set
to 1200 seconds. If an instance is not solved to guaranteed optimality, it
is said to be ‘unsolved’ for the procedure. Throughout this section, we
report averages computed only over the solved instances.

In Table 5.2 we compare the performance of the MIP formulations
discussed in Section 5.3. In this table as well as in the following, we re-
port the average runtime and the number of unsolved instances (if there
are any). Based on Table 5.2, we conclude that the time-indexed formu-
lations are far better than the assignment formulations when processing
times are small. For large processing times, the performance of ASF is
slightly better than TIF. Although ASF′ and TIF′ are tighter than their
counterparts with aggregate precedence constraints, the extra computa-
tional effort needed to process the larger models increases CPU times in
both TIF′ and ASF′.

We notice that none of the formulations is capable of solving instances
larger than 30 jobs. In fact, if processing times are large, then none of the
formulations is capable of solving instances larger than 10 jobs.

150

CHAPTER 5. INTRODUCING GSMSP

5.6 Summary and conclusion

In this chapter, we introduced a single-machine scheduling problem with
total weighted tardiness penalties. We work with a rather general problem
statement, in that both precedence constraints as well as time windows
(release dates and deadlines) are part of the input. This generalizes quite
a number of problems for which computational procedures have already
been published. We propose an assignment MILP formulation and a time-
indexed MILP formulation than can solve the problem (ASF and TIF).
For each of these formulation, we provide a theoretically stronger alter-
native (ASF′ and TIF′). ASF and ASF′ are able to solve instances of
maximum 10 jobs whereas TIF and TIF′ are able to solve instances of
maximum 30 jobs (only when processing times are small). In general,
these computational results suggest that none of the formulations is capa-
ble of solving medium-sized instances and thus studying approaches that
solve the problem in much more efficient manner is promising.

151

Chapter 6

Lower bounds for GSMSP

To live a creative life we must first lose the fear of being
wrong.

- Joseph Chilton Pearce

In the previous chapter, we introduced GSMSP which is a generic
single-machine scheduling problem with total weighted tardiness penal-
ties where the execution of each job is constrained with time windows and
precedence constraints. In this chapter, we introduce valid lower bounds
for GSMSP that can be implemented in exact algorithms. Section 6.1
introduces a conceptual formulation for our problem and Section 6.2 de-
scribes a very fast and trivial lower bounding procedure. In Section 6.3,
we describe several lower bounds based on Lagrangian relaxation. In Sec-
tion 6.4, we compare the quality of our proposed lower bounds and finally
in Section 6.5, we provide a summary and some conclusions.

153

6.1. Another conceptual formulation

6.1 Another conceptual formulation

Let variable Cj denote the completion time of job j ∈ N and let variable
Tj represent the tardiness of job j. An alternative formulation of our
problem is given by

GSMSP : min

n∑
j=1

wjTj (6.1)

subject to

Tj ≥ Cj − dj ∀j ∈ N (6.2)

Cj ≥ rj + pj ∀j ∈ N (6.3)

Cj ≤ δj ∀j ∈ N (6.4)

Cj ≥ Ci + pj ∀(i, j) ∈ A (6.5)

Cj ≥ Ci + pj or Ci ≥ Cj + pi ∀i, j ∈ N ; i < j (6.6)

Tj ≥ 0 ∀j ∈ N (6.7)

Cj ≥ 0 ∀j ∈ N. (6.8)

In the above formulation, constraints (6.2) and (6.7) reflect the definition
of job tardiness. Constraints (6.3) and (6.4) enforce time windows. Con-
straints (6.5) ensure that each job is scheduled after all its predecessors.
Constraints (6.6) guarantee that jobs do not overlap. We will use this
formulation in Section 6.3 for producing lower bounds.

To the best of our knowledge, a lower-bound procedure specifically for
GSMSP has to date not been developed in the literature. Lower bounds
proposed for 1||

∑
wjTj , 1|prec|

∑
wjCj and 1|rj |

∑
wjCj , however, can

also function as a lower bound for GSMSP; this is shown in the following
theorems. These theorems are extensions of those presented in Akturk
and Ozdemir (2000).

Let I be an instance of 1|β|
∑
wjTj . We construct an instance I ′ of

1||
∑
wjTj by removing all constraints implied by β and an instance I ′′

of 1|β|
∑
wjCj by replacing all due dates with zeros. Let TWT∗(I) be

the optimal objective value of I. Given any valid lower bound lbI′ on the
optimal value of I ′, we have:

Remark 6.1. lbI′ ≤ TWT∗(I).

Proof. Since 1||
∑
wjTj is a relaxation of 1|β|

∑
wjTj , the optimal value

of I ′ and any valid lower bound for this optimal value is considered as a
valid lower bound for I.

154

CHAPTER 6. LOWER BOUNDS FOR GSMSP

A job is called early if it finishes at or before its due date and is said
to be tardy if it finishes after its due date. Let Cj(S) be the completion
time of job j in feasible solution S. For an optimal solution S∗ to I, we
partition N into two subsets: the set E of early jobs and the set T of
tardy jobs. Let lbE be a lower bound on the value

∑
j∈E wj(dj − Cj(S∗)).

Given any valid lower bound l̄bI′′ on the optimal value of I ′′, we have:

Theorem 6.1. l̄bI′′ −
∑
j wjdj + lbE ≤ TWT∗(I).

Proof. The following equality holds:

TWT∗(I) =
∑
j∈T

wj(Cj(S
∗)− dj)

=
∑
j∈N

wj(Cj(S
∗)− dj)

−
∑
j∈E

wj(Cj(S
∗)− dj) =

∑
j∈N

wjCj(S
∗)

−
∑
j∈N

wjdj +
∑
j∈E

wj(dj − Cj(S∗)).

Recall that l̄bI′′ is a valid lower bound on the value
∑
j∈N wjCj(S

∗) and

lbE is a valid lower bound on the value
∑
j∈E wj(dj − Cj(S∗)).

In the following, we remove several combinations of constraints in
GSMSP to construct subproblems for which there exist polynomial-time-
bounded algorithms for computing lower bounds. These bounds then
directly lead to valid lower bounds for GSMSP via Remark 6.1 and The-
orem 6.1.

6.2 A trivial lower bound

Let PT be the trivial subproblem of GSMSP in which constraints (6.2),
(6.3), (6.4) and (6.5) are removed, which is then equivalent to 1||

∑
wjCj .

An optimal solution S∗ to PT (with the optimal value OPT(S∗)) follows
sequence σT , which sequences jobs according to the shortest weighted
processing time (SWPT) rule (Pinedo, 2008). By Remark 6.1 and 6.1,
LBT = OPT(S∗)−

∑
j wjdj + lbE is a valid lower bound for GSMSP. We

compute lbE as the summation of the earliness values when each job is
scheduled at its latest possible starting time. Note that if rj = dj = 0 for

155

6.3. Lagrangian-relaxation-based bounds

all jobs j and σT does not violate any deadline nor precedence constraint,
then σT is optimal to GSMSP and OPT = LBT. In B&B algorithms, this
situation frequently occurs when some jobs have already been scheduled.

6.3 Lagrangian-relaxation-based bounds

In this section, we use Lagrangian relaxation for computing various lower
bounds. Let P0 be the subproblem of GSMSP in which constraints (6.3),
(6.4) and (6.5) are removed (this problem is equivalent to 1||

∑
wjTj).

This problem is studied by Potts (1985) and is considered as our base
problem. Let λ be a vector of Lagrangian multipliers. Potts (1985) obtain
the following Lagrangian problem associated with P0:

LRP0 : L0(λ) = min

n∑
j=1

(wj − λj)Tj +

n∑
j=1

λj(Cj − dj)

subject to constraints (6.6)–(6.8).

Parameter λj is the Lagrangian multiplier associated with job j (0 ≤ λj ≤
wj). Potts and Van Wassenhove propose a polynomial-time algorithm to
set the multipliers. Their algorithm yields a very good lower bound for P0;
they compute the optimal values of the multipliers in O(n log n) time, and
for a given set of multipliers, the bound itself can be computed in linear
time. Let λPV be the best Lagrangian multipliers computed by Potts
(1985); we refer to this lower bound as LB0 = L0(λPV). By Remark 6.1,
LB0 is also a valid bound for GSMSP. Quite a number of aspects of
the definition of GSMSP are completely ignored in LB0, however; in the
following sections, we will examine a number of ways to strengthen LB0.

6.3.1 Retrieving precedence constraints

When A 6= ∅ then incorporating some or all of precedence constraints
into the lower bound will improve its quality. We partition arc set A as
A = A′ ∪ A′′, where G′ = (N,A′) is a two-terminal vertex serial-parallel
(VSP) graph and G′′ = (N,A′′). Figure 6.1 depicts an example of this
graph decomposition. For the precise definition of VSP graphs, we refer
to Valdes et al. (1982). It should be noted that there exist two types of
serial-parallel graphs: VSP graphs and edge serial-parallel (ESP) graphs.
Valdes et al. (1982) describe the link between these two types: a graph is
VSP if and only if its so-called ‘line-digraph inverse’ is ESP.

156

CHAPTER 6. LOWER BOUNDS FOR GSMSP

s 1 2

43

6

5

7

e

(a)

s 1 2

43

6

5

7

e

(b)

s 1 2

43

6

5

7

e

(c) a

Figure 6.1: This figure shows (a) an example graph G, (b) an associated VSP
sub-graph G′ and (c) G′′.

We split the set of constraints (6.5) into two subsets, as follows:

Cj ≥ Ci + pj ∀(i, j) ∈ A′ (6.9)

Cj ≥ Ci + pj ∀(i, j) ∈ A′′ (6.10)

We introduce P1, which is a generalization of P0 where precedence con-
straints are retrieved by imposing constraints (6.9) and (6.10). We create
the following associated Lagrangian problem:

LRP1 : L1(λ, µ) = min
∑
j∈N

(wj − λj)Tj

+
∑
j∈N

λj(Cj − dj) +
∑
j∈N

∑
k∈Qj

µjk(Cj + pk − Ck)

subject to constraints (6.6)–(6.9).

157

6.3. Lagrangian-relaxation-based bounds

Here λj ≥ 0 is again the multiplier associated with job j and µjk ≥ 0
denotes the Lagrangian multiplier associated with the arc (j, k) ∈ A. We
deliberately keep constraints (6.9) in the Lagrangian problem LRP1 . The
objective function can be rewritten as∑

j∈N
(wj − λj)Tj +

∑
j∈N

w′jCj + c

where

w′j = λj +
∑
k∈Qj

µjk −
∑
k∈Pj

µkj

and

c =
∑
j∈N

∑
k∈Qj

µjkpk −
∑
j∈N

λjdj ,

so it can be seen that LRP1
is a total-weighted-completion-times problem

with serial-parallel precedence constraints, because all Tj will be set to
zero and

∑
j∈N (wj − λj)Tj can be removed from the formulation. Lawler

(1978) proposes an algorithm that solves this problem in O(n log n) time
provided that a decomposition tree is also given for the VSP graph G′.
Valdes et al. (1982) propose an O(n + m)-time algorithm to construct a
decomposition tree of a VSP graph, where m is the number of arcs in
the graph. Calinescu et al. (2012) show that any VSP graph (directed
or undirected), including G′, has at most 2n − 3 arcs. Therefore, for
any given λ and µ, the problem LRP1 is solvable in O(n log n) time.
From the theory of Lagrangian relaxation (Fisher, 1981), for any choice
of non-negative multipliers, L1(λ, µ) provides a lower bound for P1. By
Remark 6.1, this lower bound is also valid for GSMSP. In Section 6.3.2,
we explain how to choose appropriate values for λ and µ and Section 6.3.3
describes how to select a suitable VSP graph G′ and how to construct a
decomposition tree for G′.

6.3.2 Multiplier adjustment

We present a two-phase adjustment (TPA) procedure for the multipliers
in L1(λ, µ). Let λTPA and µTPA be Lagrangian multipliers adjusted by
TPA; these lead to a new lower bound LB1 = L1(λTPA, µTPA). The TPA
procedure is heuristic, in the sense that it may not minimize L1 in λ and µ.

158

CHAPTER 6. LOWER BOUNDS FOR GSMSP

kmax
n

20 30 40
0 11.576 8.505 6.85
5 14.579 17.454 13.493
10 15.026 18.147 14.065
20 15.207 18.419 14.344
50 15.296 18.503 14.466
100 15.310 18.508 14.495
∞ 15.314 18.512 14.506

Table 6.1: The average percentage deviation between LB1 and LB0 tested on
InsL.

In the first stage of TPA, we simply ignore precedence constraints al-
together. For a feasible solution S, consider the function g(λ, µ, S) defined
as follows:

g(λ, µ, S) =
∑
j∈N

(wj − λj)Tj +
∑
j∈N

λj(Cj − dj)

+
∑
j∈N

∑
k∈Qj

µjk(Cj + pk − Ck).

We start with the Lagrangian problem L̂RP1
where L̂1(λ, µ) =

min g(λ, µ, S) subject to constraints (6.6)–(6.8), which is a relaxation of
LRP1

. We simply set all µjk to zero (µ = µ0 = (0, . . . , 0)); with this

choice, L̂1(λ, µ) = L0(λ) and we set λTPA = λPV.
In the second stage of TPA, the multipliers µjk are adjusted assuming

that λ = λTPA is predefined and constant. This adjustment is an iterative
heuristic; we adopt the quick ascent direction (QAD) algorithm proposed
by van de Velde (1995). One iteration of TPA runs in O(m + n log n)
time, where m = |A|. We have run a number of experiments to evalu-
ate the improvement of the lower bound as a function of the number of
iterations kmax. For a representative dataset, Table 6.1 shows that the
average percentage deviation of LB1 from LB0 significantly increases in
the first iterations, whereas after about five iterations the incremental im-
provement becomes rather limited; more information on the choices for
kmax follows in Sections 6.3.3 and 6.4. The instance generation scheme is
explained in Section 5.4.

Theorem 6.2. LB0 ≤ LB1.

159

6.3. Lagrangian-relaxation-based bounds

Figure 6.2: The forbidden subgraph for VSP graphs.

Proof. We argue that

LB0 = L0(λPV) = L̂1(λPV, µ0) ≤ L̂1(λTPA, µTPA)

≤ L1(λTPA, µTPA) = LB1.

The first inequality follows from Theorem 3 in van de Velde (1995), where
it is shown that TPA generates a series of monotonically increasing lower
bounds. The second inequality corresponds with Remark 6.1.

6.3.3 Finding a VSP graph

LB1 requires a decomposition of graph G into two subgraphs G′ = (N,A′)
and G′′ = (N,A′′), such that A′ ∪ A′′ = A and G′ is a VSP graph.
The more arcs we can include in A′, the tighter the lower bound. In
the following, we discuss procedures to find a VSP subgraph G′ with
maximum number of arcs; we refer to this problem as the maximum VSP
subgraph (MVSP) problem.

Valdes et al. (1982) state the following result:

Lemma 6.1. A graph G is VSP if and only if its transitive closure does
not contain the graph of Figure 6.2 as a subgraph.

Valdes et al. refer to the pattern in Figure 6.2 as the forbidden sub-
graph. Polynomial-time exact procedures exist for finding an ESP sub-
graph with maximum number of nodes (Bein et al., 1992), but to the best
of our knowledge, no exact approach for MVSP has been proposed yet in
literature. McMahon and Lim (1993) suggest a heuristic traversal proce-
dure to find and eliminate all forbidden subgraphs and, at the same time,
construct a binary decomposition tree for the resulting VSP graph. Their
procedure runs in O(n + m) time. The number of arcs in a VSP graph
is bounded by 2n− 3 for an arbitrary non-VSP graph, but the maximum
number of arcs for an arbitrary input graph is O(n2). We implement a

160

CHAPTER 6. LOWER BOUNDS FOR GSMSP

slightly modified variant of the algorithm in McMahon and Lim (1993) to
compute G′; we select arcs for removal so that the lower bound remains
reasonably tight. Simultaneously, it constructs a decomposition tree for
the obtained VSP graph. The time complexity of O(n+m) is maintained.

The structure of our heuristic decomposition and arc-elimination pro-
cedure is described in the following lines. The procedure constructs a de-
composition tree by exploiting parallel and serial node reduction (Lawler,
1978). Parallel reduction merges a job pair into one single job if both jobs
have the same predecessor and successor sets. In the decomposition tree,
such jobs are linked by a P node, which means they can be processed in
parallel (see Figure 6.3(b)). Serial reduction merges a job pair {i, j} into
one single job if arc (i, j) ∈ A, job i has only one successor and job j
has only one predecessor. In the decomposition tree, such two jobs are
linked by an S node, which means they cannot be processed in parallel
(see Figure 6.3(d)). Whenever a forbidden subgraph is recognized, the
procedure removes arcs such that the forbidden subgraph is resolved (re-
moved) and the total number of removed arcs (including transitive and
merged arcs) is approximately minimized (see Figures 6.3(b) and 6.3(c)).
Notice that some arcs may actually represent multiple merged arcs, so
removing one arc in one iteration might imply the removal of multiple
arcs simultaneously in the original network G.

In the branch and bound tree of Chapter 7, the proposed algorithm
is run only once, in the root node of the search tree. In each other node
of the search tree, graphs G′ and G′′ are constructed by removing from
the corresponding graphs in the parent node the arcs associated with the
scheduled jobs; the resulting graphs are then the input for computing
LB1. Notice that for each child node, both graphs G′ and G′′ as well as
the associated decomposition tree can be constructed in O(n) time.

To evaluate the impact of our arc elimination procedure on the quality
of the bounds, we examine two variations of LB1, namely LB1(VSP) =
L1(λTPA, µTPA), where all forbidden graphs in G are resolved using the
arc elimination procedure, and LB1(NO) = L̂1(λTPA, µTPA), in which
we simply remove all arcs (A′ = ∅ and A′′ = A). Let kmax be the
maximum number of iterations for TPA, as explained in Section 6.3.2.
Table 6.2 demonstrates the success of our proposed algorithm in tight-
ening the bound. The distance between the bounds is decreasing with
increasing kmax, but in a B&B algorithm, a large value for kmax becomes
computationally prohibitive.

Theorem 6.3. LB1(NO) ≤ LB1(VSP) for the same value of kmax.

161

6.3. Lagrangian-relaxation-based bounds

s 1 2

43

6

5

7

e

(a)

s 1 2

43

67

5

P

6 7

e

(b)

s 1 2

43

67

5

P

6 7

e

(c)

s 1

43

267

5

S

P2

6 7

e

(d)

s 1267

345

S

1 S

P2

6 7

S

3 S

4 5

e

(e)

s 1234567

P

S

1 S

P2

6 7

S

3 S

4 5

e

(f)

S

s S

eP

S

1 S

P2

6 7

S

3 S

4 5

(g)

Figure 6.3: Modified traversal algorithm applied to the input graph in (a).

162

CHAPTER 6. LOWER BOUNDS FOR GSMSP

kmax LB1(VSP) LB1(NO)
0 6.850 0
1 10.515 9.057
2 12.171 11.497
3 12.896 12.538
5 13.493 13.385
10 14.344 14.020
100 14.466 14.458

Table 6.2: The average percentage deviation between LB1 and LB0 tested on
InsL with 40 jobs.

Proof. LB1(NO) is obtained by solving LRP1
with A′ = ∅ and A′′ = A,

so with the same multipliers the problem associated with LB1(NO) is a
relaxation of the problem associated with LB1(VSP). The multipliers are
updated with TPA in both cases, and will indeed be the same for a given
kmax, so the theorem holds.

Bound LB1 turns out not to be very tight when release dates are
rather heterogeneous. Below, we examine two means to produce a stronger
bound, namely block decomposition and job splitting.

6.3.3.1 Block decomposition

We follow Hariri and Potts (1983), Pan and Shi (2005) and Potts and
Van Wassenhove (1983) in setting up a decomposition of the job set into
separate blocks: a block is a subset of jobs for which it is a dominant
decision to schedule them together. We sort and renumber all jobs in
non-decreasing order of their modified release dates r̄j (that are com-
puted by applying precedence constraints propagation); as a tie-breaking
criterion, we consider non-increasing order of wj/pj . The resulting non-
delay sequence of jobs is given by σr = (1, . . . , n), where a sequence is
said to be ‘non-delay’ if the machine is never kept idle while some jobs
are waiting to be processed (Pinedo, 2008). Let Bi = (ui, . . . , vi) be one
block (in which jobs are sorted according to their new indices). The set
B = {B1, . . . , Bκ} is a valid decomposition of the job set into κ blocks if
the following conditions are satisfied:

1. u1 = 1;

163

6.3. Lagrangian-relaxation-based bounds

2. for each i, j with 1 < i ≤ κ and 1 ≤ j ≤ n, if ui = j then vi−1 = j−1
and vice versa;

3. for each i, j with 1 ≤ i ≤ κ and ui ≤ j ≤ vi, we have r̄ui +∑j−1
s=ui

ps ≥ r̄j .

Although the sequencing of the jobs within one block is actually still open,
the sequencing of the blocks is pre-determined. Given a valid set of blocks
B, we compute LB1 for each block Bi ∈ B separately. The value LB2 is
then the sum of the bounds per block; analogously to Hariri and Potts
(1983), Pan and Shi (2005) and Potts and Van Wassenhove (1983), LB2

can be shown to be a lower bound for GSMSP.

We define LB∗1 = L1(λ∗, µ∗), where λ∗ and µ∗ are optimal choices
for the Lagrangian multipliers for LB1, and LB∗2, which is computed by
adding the contribution L1(λ∗Bi , µ

∗
Bi

) for each block Bi, where λ∗Bi and
µ∗Bi are the optimal choices for the multipliers for block Bi.

Theorem 6.4. LB∗1 ≤ LB∗2.

Proof. We introduce gBi(λ, µ, S) as follows:

gBi(λ, µ, S) =
∑
j∈Bi

(wj − λj)Tj +
∑
j∈Bi

λj(Cj − dj)+

∑
j∈Bi

∑
k∈Qj

µjk(Cj + pk − Ck).

Let S∗1 be an optimal solution to LB∗1 and S∗2 = (S∗B1
, . . . , S∗Bκ) an optimal

solution to LB∗2. The following result is derived:

LB∗1 = g(λ∗, µ∗, S∗1) ≤ g(λ∗, µ∗, S∗2)

=

κ∑
i=1

gBi(λ
∗, µ∗, S∗Bi) ≤

κ∑
i=1

gBi(λ
∗
Bi , µ

∗
Bi , S

∗
Bi) = LB∗2.

Although TPA might not find λ∗Bi and µ∗Bi and thus the same result
as Theorem 6.4 might not hold for LB1 and LB2, empirical results show
that LB2 is on average far tighter than LB1 (these results are shown in
Table 6.3).

164

CHAPTER 6. LOWER BOUNDS FOR GSMSP

6.3.3.2 Job splitting

It sometimes happens that the decomposition procedure fails to improve
the bound (only one block is created and LB2 = LB1). Another approach
is to explicitly re-introduce the release-date constraints (which have been
removed previously). We define problem P2, which is a generalization of
P1 in which the release-date constraints (6.3) are included. The associated
Lagrangian problem is

LRP2 : L2(λ, µ) = min
∑
j∈N

w′jCj + c

subject to constraints (6.3),(6.6)–(6.8).

Contrary to LRP1
, we now remove the serial-parallel precedence con-

straints because they render the Lagrangian problem too difficult. Prob-
lem LRP2

is a total-weighted-completion-times problem with release dates.
This problem is known to be NP-hard (Lenstra et al., 1977), but a number
of efficient polynomial algorithms, which are based on job splitting, have
been proposed to compute tight lower bounds (Belouadah et al., 1992;
Hariri and Potts, 1983; Nessah and Kacem, 2012). One of these algo-
rithms is the SS procedure proposed by Belouadah et al. (1992), which
runs in O(n log n) time and which we adopt here. Essentially, we again
decompose the job set into a set of blocks B and compute L2(λ, µ) for
each block Bi ∈ B. The lower bound LBSSr

2 is again the sum of the
contributions of the individual blocks. Experiments show that LBSSr

2 is
typically tighter than LB2 when the release dates are unequal. With equal
release dates, on the other hand, normally LB2 ≥ LBSSr

2 because LB2 in-
corporates a part of the precedence graph. TPA is applied also here for
multiplier updates.

We introduce P′2, which is a generalization of P1 where deadline con-
straints are retrieved by inclusion of the constraint set (6.4). The associ-
ated Lagrangian problem is

LRP′2
: L′2(λ, µ) = min

∑
j∈N

w′jCj + c

subject to constraints (6.4),(6.6)–(6.8).

LRP′2
is a total-weighted-completion-times problem with deadlines. This

problem is known to be NP-hard (Lenstra et al., 1977). Posner (1985) pro-
poses a job-splitting lower bounding scheme for LRP′2

that uses O(n log n)

165

6.3. Lagrangian-relaxation-based bounds

time; the lower bound LBSSδ
2 results from block decomposition and com-

putation of L′2(λ, µ) for each block. We again apply TPA for setting the
multiplies.

6.3.4 Improvement by slack variables

Relaxed inequality constraints can be considered to be ‘nasty’ constraints
because they decrease the quality of lower bounds. We follow Hoogeveen
and van de Velde (1995) in exploiting the advantages of slack variables to
lessen the effect of such nasty constraints to improve the quality of the
lower bounds.

We introduce two non-negative vectors of slack variables: vector y =
(y1, . . . , yn) and vector z = (z11, . . . , z1n, . . . , zn1, . . . , znn). Consider the
following sets of constraints:

Tj = Cj − dj + yj ∀j ∈ N (6.11)

Cj = Ci + pj + zij ∀(i, j) ∈ A (6.12)

yj , zij ≥ 0 ∀i, j ∈ N (6.13)

Let problem P3 be the variant of problem P1 in which the sets of con-
straints (6.2) and (6.5) are replaced by the constraints (6.11)–(6.13). The
Lagrangian problem associated with P3 is

LRP3
: L3(λ, µ) = min

n∑
j=1

(wj − λj)Tj +

n∑
j=1

λjyj+

n∑
j=1

∑
k∈Qj

µjkzjk +
∑
j∈N

w′jCj + c

subject to constraints (6.6)–(6.9) and (6.13).

The values of the variables Tj , yj and zjk are zero in any optimal solution
to LRP3

because for i, j ∈ N the following inequalities hold: 0 ≤ λj ≤ wj
and µjk ≥ 0. In an optimal solution to P3, however, these values might
not be zero. In fact, according to the set of constraints (6.11), unless
Cj = dj , either Tj or yj is nonzero. Also, from constraints (6.12), zjk
may not be zero when job j has at least two successors or job k has at
least two predecessors in G. We introduce three problems that each carry
a part of the objective function of LRP3

, one of which is LRP1
and the

other two are the following two slack-variable (SV) problems, where Y is

166

CHAPTER 6. LOWER BOUNDS FOR GSMSP

the set of all y-vectors corresponding to feasible solutions to P3 and Z
similarly contains all z-vectors.

PSV1 : SV1(λ) = min

n∑
j=1

(wj − λj)Tj +

n∑
j=1

λjyj

subject to constraints (6.6),(6.7),(6.9) and y ∈ Y ;

PSV2 : SV2(µ) = min

n∑
j=1

∑
k∈Qj

µjkzjk

subject to constraint z ∈ Z.

Note that the term
∑n
j=1 (wj − λj)Tj appears in two of the problems, but

it will be set to zero anyway in LRP1
.

Hoogeveen and van de Velde (1995) propose O(n log n)-time proce-
dures to compute valid lower bounds for PSV1 and PSV2. Let LBSV1 ≥ 0
and LBSV2 ≥ 0 be lower bounds for PSV1 and PSV2, respectively. By
adding LBSV1 and LBSV2 to LB2, a better lower bound LB3 for P is
obtained (Hoogeveen and van de Velde, 1995). The same SV prob-
lems can also be constructed for LBSSr

2 and LBSSδ
2 to lead to bounds

LBSSr
3 = LBSSr

2 + LBSV1 + LBSV2 and LBSSδ
3 = LBSSδ

2 + LBSV1 + LBSV2.
We have the following result:

Observation 6.1. LB2 ≤ LB3, LBSSr
2 ≤ LBSSr

3 and LBSSδ
2 ≤ LBSSδ

3 .

6.3.5 Other Lagrangian bounds

All the lower bounds introduced in this section are based on the formu-
lation (6.1)-(6.8). Other Lagrangian-relaxation-based lower bounds have
also been proposed for special cases of this problem. These other bounds
are mostly based on other (conceptual) formulations. For example, to
achieve a lower bound, Lagrangian penalties could be added to the ob-
jective function while allowing jobs to be processed repeatedly. Many
variants of such a lower bound exist (Tanaka and Fujikuma, 2012; Tanaka
and Sato, 2013; Tanaka et al., 2009), but most of these variants are either
too weak or too slow. Another lower bound based on Lagrangian relax-
ation is obtained by relaxing the capacity constraints, such that jobs are
allowed to be processed in parallel in exchange for Lagrangian penalties
(Tang et al., 2007).

167

6.4. The quality of the lower bounds

6.4 The quality of the lower bounds

We compare the quality of the lower bounds for the subset of instances
with large processing times and n = 30. We set kmax = 10 for all lower
bounds. The detailed results of this comparison are reported in Table 6.3.

The average gap for LB1 is less than or equal to that for LB0, especially
when the precedence graph is dense; for OS = 0, on the other hand, there
are no precedence constraints and LB0 and LB1 are essentially the same.
A similar observation can be made for LB1 and LB2, where the gap for LB2

is noticeably smaller than that for LB1 when release dates are imposed,
while in the case τ = 0, only one block is created and the lower bounds
LB1 and LB2 coincide. The average gap for LB3 is indeed smaller than
that for LB2, as was to be expected according to Observation 6.1. Despite
all the improvements, it should be noted that all gaps remain relatively
large.

Although we have no theoretical result that would indicate a better
performance of LBSSr

2 in comparison with LB2, the average gap for LBSSr
2

is less than that for LB2 in case of non-zero release dates. When release
dates are zero, however, the gap for LBSSr

2 is larger than or equal to
that for LB2. In fact, when release dates are zero, only one block is
created and constraints (6.3) can be removed from LRP2

, and thus LRP2

is a relaxation of LRP1
. LBSSδ

2 performs better than LB2 and LBSSr
2 for

most of the instances. The gap for LBSSr
3 is less than that for LBSSr

2 and
a similar observation holds for LBSSδ

3 versus LBSSδ
2 , which confirms the

result in Observation 6.1.

168

LB0 LB1 LB2 LBSSr
2 LBSSδ

2 LB3 LBSSr
3 LBSSδ

3 LBBest

OS

0.00 50.505 50.505 44.369 43.313 36.857 43.142 42.086 35.630 35.372
0.25 67.776 63.465 53.444 52.702 52.300 51.955 51.013 50.568 49.834
0.50 71.461 66.108 52.378 51.890 52.021 51.216 50.727 50.767 50.352
0.75 77.055 69.836 50.769 50.520 50.565 49.430 49.182 49.041 48.863

τ
0.00 38.141 29.169 29.169 29.182 24.784 28.152 28.165 23.667 23.667
0.50 76.712 73.157 59.554 58.724 57.699 57.876 57.046 55.922 55.656
1.00 85.704 85.539 62.494 61.255 61.655 61.117 59.878 60.233 59.309

All - 67.161 62.911 50.638 49.950 48.268 49.275 48.586 46.824 46.425

Table 6.3: Average percentage gap from optimal value.

6.5. Summary and conclusion

6.5 Summary and conclusion

In this chapter we propose a number of lower bounding approaches that
are based Lagrangian relaxation. These lower bounds are obtained by re-
moving different combination of constraints and then gradually incorpo-
rating them via Lagrangian penalties. Among our proposed lower bound-
ing approaches, LBSSδ

3 performs the best in terms of average percentage
gap from optimal value. In spite of the fact that our proposed lower
bounds are meant to deal with instances with non-zero release date and
with precedence relations, their performances seem to be weak (the aver-
age percentage gap from optimal value is on average more than 50%) when
release dates are loose and/or precedence graph is dense. This suggests
that in future researches interested authors must focus on finding lower
bounding approaches that produce tight bounds specially when release
dates are loose and/or precedence graph is dense.

170

Chapter 7

A branch and bound algorithm for GSMSP

Arriving at one goal is the starting point to another.

- John Dewey

In the previous chapters, we introduced GSMSP and proposed several
lower bounds. In this chapter, we present a branch-and-bound (B&B)
algorithm that can solve small- and medium-sized instances of GSMSP
until optimality. The remainder of this chapter is structured as follows.
We first present two branching schemes in Section 7.1. Then we introduce
six different dominance rules in Section 7.2. Next in Section 7.3, we
propose an algorithm that computes an initial upper bound for GSMSP.
After that in Section 7.4 we report detailed computational results and
finally in Section 7.5 a summary is provided.

7.1 Branching strategies

In this section we discuss two different branching strategies for our B&B
algorithm. The structure of the B&B search trees is as follows: each
tree consists of a finite number of nodes and branches, and at each level
of the tree we make a sequencing decision for one job. Each node thus

171

7.1. Branching strategies

σB U = EB ∪ EE ∪ EN σE

Figure 7.1: The structure of a partial schedule.

corresponds with a selection SP ⊆ N containing the already scheduled
jobs and a set of unscheduled jobs U = N\SP . Each node also has
two feasible partial sequences σB and σE of the scheduled jobs (each
i ∈ SP appears in exactly one of these two): σB (respectively σE) denotes
the partial sequence of jobs scheduled from the beginning (respectively
end) of the scheduling horizon; see Figure 7.1 for an illustration. All
jobs that are not scheduled, belong to the set of unscheduled jobs U =
EB ∪ EE ∪ EN . EB is subset of unscheduled jobs that are eligible to
be scheduled immediately after the last job in σB , EE is the subset of
unscheduled jobs that are eligible to be scheduled immediately before the
first job in σE and EN is the subset of unscheduled jobs that are not in
EB ∪ EE .

The root node represents an empty schedule (SP = σB = σE = ∅).
Each node branches into a number of child nodes, which each correspond
with the scheduling of one particular job, called the decision job, as early
as possible after the last job in σB or as late as possible before the first
job in σE . A branch is called a forward branch if it schedules a job after
the last job in σB , and is called a backward branch if it schedules a job
before the first job in σE . In our branching strategies, there will be either
only forward branches or only backward branches emanating from each
given node. We will say that a node is of type FB (respectively BB) if all
its branches are forward (respectively backward) branches.

Although scheduling jobs backward (from the end of the time horizon)
often improves the tightness of lower bounds (Potts, 1985) when release
dates are equal, it probably decreases the quality of the lower bounds in
the presence of non-equal release dates; see Sections 6.3 and 7.1.2 for a
description of backward branching and of the lower bounds, respectively,
and Section 7.4.2 for the empirical results and a discussion. Also, the effi-
ciency of some dominance rules may decrease when we switch from forward
scheduling to backward scheduling; see Section 7.2.4 for more details. We
propose two B&B algorithms, each applying one of the branching strate-
gies: BB1 corresponds with branching strategy 1 where only FB nodes are
used and BB2 corresponds with branching strategy 2 where both FB and

172

CHAPTER 7. A B&B ALGORITHM FOR GSMSP

BB are created. The bounding and the dominance properties discussed
in the following sections are the same in both B&B algorithms.

Let Cmax(σ) be the completion time of the last job in the sequence σ.
Throughout the branching procedure, we maintain two vectors of updated
release dates, namely r̂ = (r̂1, . . . , r̂n) and r̄ = (r̄1, . . . , r̄n), defined as
follows:

r̂j = max{rj , Cmax(σB)}

r̄j = max

{
r̂j ,max

k∈Pj
{r̄k + pk}

}
.

Let st(π) denote the start time of the first job according to sequence π. In
line with the two vectors of updated release dates, we also introduce two
vectors of updated deadlines, namely δ̂ = (δ̂1, . . . , δ̂n) and δ̄ = (δ̄1, . . . , δ̄n),
which are recursively computed as follows:

δ̂j = min{δj , st(σE)}

δ̄j = min

{
δ̂j , min

k∈Qj

{
δ̄k − pk

}}
.

We use these updated release dates and deadlines in computing lower
bounds and dominance rules. δ̄ and r̄ are more restrictive than δ̂ and r̂
in each node of the search tree (r̄j ≥ r̂j and δ̄j ≤ δ̂j). Although being

restrictive often is positive, r̂j and δ̂j are occasionally preferred over r̄j
and δ̄j , specifically in parts of computations related to the dominance
rules discussed in Section 7.2. Further explanations of these occasions are
given in Section 7.2. There are many cases in which r̄j = r̂j (respectively

δ̄j = δ̂j) and either of the updated release dates (respectively deadlines)

can be used. In these cases, we use r̂j (respectively δ̂j) because less
computations are needed.

7.1.1 Branching strategy 1

Branching strategy 1 only uses FB nodes. The search tree is explored
depth-first such that among children of a node, those with larger out-
degrees (number of transitive successors) of their decision jobs in Ĝ are
visited first. As a tie-breaking rule, among children with equal out-degrees
of their decision jobs, the node with lower index is visited first.

Example. Figure 7.2 illustrates branching strategy 1 applied to the exam-
ple in Section 5.2 ; an asterisk ‘*’ indicates that the position has not been

173

7.1. Branching strategies

root: (∗, ∗, ∗, ∗)

(1, ∗, ∗, ∗)

(1, 2, ∗, ∗)

(1, 2, 3, ∗)

(1, 2, 3, 4)

infeasible schedule

(1, 2, 4, ∗)

infeasible schedule

(1, 4, ∗, ∗)

(1, 4, 2, ∗)

(1, 4, 2, 3)

(4, ∗, ∗, ∗)

(4, 1, ∗, ∗)

(4, 1, 2, ∗)

(4, 1, 2, 3)

optimal schedule

Figure 7.2: Branching strategy 1 for the example in Section 5.2 without dom-
inance rules and without lower bounds.

decided yet. Among the children of the root node, the node (1, ∗, ∗, ∗) corre-
sponds with the decision job (job 1) with the largest out-degree (namely 3).
As a result, the node (1, ∗, ∗, ∗) is visited first. The nodes (2, ∗, ∗, ∗) and
(3, ∗, ∗, ∗) are not in the tree because they violate precedence constraints.
Among the children of (1, ∗, ∗, ∗), the node (1, 2, ∗, ∗) is visited first because
it has the decision job 2 with the largest out-degree. Among the children
of (1, 2, ∗, ∗), the node (1, 2, 3, ∗) is visited first because its decision job
has the largest out-degree and the smallest index. In Figure 7.2, green
nodes are FB nodes; no BB nodes are present. Red nodes are considered
infeasible because the completion of a job (namely job 4) occurs after its
deadline. The node (1, 4, 2, 3) corresponds with a feasible schedule, but it
is not optimal: its objective value is greater than 15, which is attained by
the optimal sequence (4, 1, 2, 3).

7.1.2 Branching strategy 2

In branching strategy 2, we try to exploit the advantages of backward
scheduling whenever possible, so the search tree consists of both FB and
BB nodes. If the inequality Cmax(σB) < rmax(U) = maxj∈U {rj} holds,
then the start times of the jobs in σE will depend on the order in which
unscheduled jobs are processed. Therefore, if the inequality Cmax(σB) <
rmax(U) holds, the corresponding node is of type FB. Otherwise, the
completion time of the last job in σE can be computed regardless of the

174

CHAPTER 7. A B&B ALGORITHM FOR GSMSP

root: (∗, ∗, ∗, ∗)

(1, ∗, ∗, ∗)

TE = 14

(1, ∗, ∗, 4)

infeasible schedule

(1, ∗, ∗, 3)

(1, ∗, 4, 3)

infeasible schedule

(1, ∗, 2, 3)

(1, 4, 2, 3)

(4, ∗, ∗, ∗)

(4, ∗, ∗, 3)

(4, ∗, 2, 3)

(4, 1, 2, 3)

optimal schedule

Figure 7.3: Branching strategy 2 for the example in Section 5.2 without dom-
inance rules and without lower bounds.

sequencing decisions for the jobs in U , and we have a BB node. The
branching is depth-first for both FB and BB nodes. Among the children
of an FB (respectively BB) node, those with higher (respectively lower)
out-degrees of their decision jobs are visited first. As a tie-breaking rule,
among children with equal out-degrees, the node with lower (respectively
higher) index is visited first.

Example. Figure 7.3 illustrates branching strategy 2 for the example in
Section 5.2 ; green nodes are of type FB and blue nodes are of type BB.
The root node is FB because Cmax(∅) = 0 < 4 = rmax({1, 2, 3, 4}). At the
node labeled (1, ∗, ∗, ∗), the completion time Cmax(1, ∗, ∗, ∗) = 5 of the de-
cision job surpasses rmax({1, 2, 3, 4}) = 4, therefore the end of scheduling
horizon is computed (TE = 5 + 3 + 4 + 2 = 14) and the node is BB. The
red nodes are infeasible because the completion time of job 4 falls after its
deadline.

7.2 Dominance properties

Our search procedure also incorporates a number of dominance rules,
which will be described in this section. We will use the following addi-
tional notation. Given two partial sequences π = (π1, . . . , πk) and π′ =
(π′1, . . . , π

′
k′), we define a merge operator as follows: π|π′ = (π1, . . . , πk,

175

7.2. Dominance properties

π′1, . . . , π
′
k′). If π′ contains only one job j then we can also write

π|j = (π1, . . . , πk, j), and similarly if π = (j) then j|π′ = (j, π′1, . . . , π
′
k′).

7.2.1 General dominance rules

We use the lower bounds proposed in Chapter 6 to prune the search tree.
Let LB(U) represent any of the lower bounds described in Chapter 6,
applied to the set U of unscheduled jobs, and let Sbest be the currently
best known feasible solution. Notice that TWT(Sbest) is an upper bound
for TWT(S∗). The following dominance rule is then immediate:

Dominance rule 7.1 (DR7.1). Consider a node associated with selection
SP . If

TWT(SP) + LB(U) ≥ TWT(Sbest),

then the node associated with SP can be fathomed.

As we already introduced in Section 7.1, a partial schedule can be
denoted by either SP or (σB , σE). Multiple lower bounds can be used to
fathom a node. The selection of lower bounds and the order in which they
are computed obviously influences the performance of the B&B algorithm.
These issues are examined in Section 7.4.

The subset of active schedules is dominant for total weighted tardiness
problems (Conway et al., 1967; Pinedo, 2008). A feasible schedule is called
active if it is not possible to construct another schedule by changing the
sequence of jobs such that at least one job is finishing earlier and no other
job finishes later. The dominance of active schedules holds even when
deadlines and precedence constraints are given.

Dominance rule 7.2 (DR7.2). Consider a node associated with (σB , ∅)
that is selected for forward branching, and let j be a job belonging to EB.
If r̄j ≥ mink∈EB{r̄k+pk}, then the child node associated with the schedule
(σB |j, ∅) can be fathomed.

We also prune a branch whenever an obvious violation of the deadline
constraints is detected. A partial schedule associated with a particular
node is not always extended to a feasible schedule. Scheduling a job
in one particular position may force other jobs to violate their deadline
constraints, even though it does not violate its own constraints. Let A be
an arbitrary subset of U and let ΠA be the set of all possible permutations
of jobs in A. The following theorem states when a job is scheduled in
a ‘wrong position’, meaning that it will lead to a violation of deadline
constraints.

176

CHAPTER 7. A B&B ALGORITHM FOR GSMSP

Theorem 7.1. Consider a partial schedule (σB , σE). If there
exists any non-empty subset A ⊂ U such that the inequality
minπ∈ΠA{Cmax(σB |π)} > maxj∈A {δ̄j} holds, then the schedule (σB , σE)
is not feasible.

Proof. If minπ∈ΠA{Cmax(σB |π)} is greater than maxj∈A {δ̄j} then at least
one job in A cannot be scheduled before its deadline and the schedule
(σB , σE) is not feasible.

The problem minπ∈ΠA{Cmax(σB |π)}, which equals 1|rj , δj , prec|Cmax,
is NP-hard because the mere verification of the existence of a feasible
schedule is already NP-complete. We remove deadlines and create a new
problem whose optimal solution is computed in O(n2) time (Lawler, 1973).
For computational efficiency, we use a linear-time lower bound for this new
problem. This lower bound is computed as follows: minj∈A∩EB {r̄j} +∑
j∈A pj .

Dominance rule 7.3 (DR7.3). The node associated with (σB , σE) can be
eliminated if at least one of the following conditions is satisfied:

1. if σE = ∅ and the condition of Theorem 7.1 is satisfied for the partial
schedule (σB , ∅);

2. if σE 6= ∅ and maxj∈U{δ̄j} < st(σE).

While additional precedence constraints could be added to the problem
considering time windows and using constraint propagation techniques,
the solution representation for our B&B algorithms and the above domi-
nance rules (DR7.2 and DR7.3) are devised in such a way that any violation
of these additional precedence constraints is dominated.

Example. Consider two jobs i and j with pi = pj = 10, ri = 0, rj = 5,
δi = 20 and δj = 30. Using constraint propagation techniques, it could be
possible to include an extra constraint that allows the processing of job j
to occur only after the completion of job i. Such an additional constraint
is not necessary, however, because in the above-described situation, all
sequences in which job j precedes job i will be automatically fathomed
by DR7.2 and DR7.3. Moreover, increasing the density of the precedence
graph in this way would also decrease the tightness of the lower bounds,
which is undesirable.

177

7.2. Dominance properties

S1 σB k B j B

S′
1 σB j B k B

Figure 7.4: Schedules S1 and S′
1.

7.2.2 Dominance rule based on two-job interchange

We describe a dominance rule based on job interchange. This dominance
rule consists of two parts. The first part deals with the interchange of
jobs in an FB node whereas the second part deals with the interchange of
jobs in a BB node.

7.2.2.1 Interchanging jobs in an FB node

In an FB node, consider jobs j, k ∈ EB that are not identical (they differ in
at least one of their parameters). We will always assume that r̂k < r̂j +pj
and r̂j < r̂k + pk, because otherwise Dominance rule 7.2 enforces the
scheduling of the job with smaller r̂ before the job with larger r̂; note
here that r̂j = r̄j and r̂k = r̄k because all predecessors of jobs j and k
has already been scheduled and therefore the branching decisions cover the
propagation of precedence constraints. We also assume that any successor
of job k is also a successor of job j (Qk ⊂ Qj). Consider a node of
the search tree in which job k is scheduled at or after the completion of
sequence σB . Suppose that the partial schedule associated to the current
node can be extended to a feasible schedule S1 in which job j is scheduled
somewhere after job k. We define a set B = U\{j, k} of jobs. We also
construct a schedule S′1 by interchanging jobs j and k while the order of
jobs belonging to B remains unchanged. Figure 7.4 illustrates schedules
S1 and S′1.

To prove that interchanging jobs j and k does not increase the total
weighted tardiness, we argue that the gain of interchanging jobs j and k,
which is computed as TWT(S1) − TWT(S′1), is greater than or equal to
zero, no matter when job j is scheduled. Let stj(S) denote the start time
of job j in schedule S. Remember that st(π) denotes the start time of a
sequence π. Let τ1 be the difference between the start time of job j in
S1 and the start time of k in S′1. If stk(S′1) is less than stj(S1) then τ1

178

CHAPTER 7. A B&B ALGORITHM FOR GSMSP

is negative, otherwise it is non-negative. By interchanging jobs j and k
each job that belongs to set B may be shifted either to the right or to the
left. Let τ2 ≥ 0 be the maximum shift to the right of the jobs belonging
to set B. Notice that if all jobs in B are shifted to the left, then τ2 = 0.
For each t as the start time of job j in S1, Jouglet et al. (2004) define a
function Γjk(t, τ1, τ2) as follows:

Γjk(t, τ1, τ2) = wj max{0, t+ pj − dj}
− wk max{0, t+ τ1 + pk − dk}
+ wk max{0, r̂k + pk − dk}

− wj max{0, r̂j + pj − dj} − τ2
∑
i∈B

wi.

For the sub-problem of P where precedence and deadline constraints
are removed, Jouglet et al. (2004) show that Γjk(t, τ1, τ2) is a lower bound
for the gain of interchanging jobs j and k when t = stj(S1). This result
can be improved by adding the gain of shifting the jobs which are tardy
in both schedules S1 and S′1. We introduce the set B′ of jobs where each
job i ∈ B′ is certainly a tardy job in S′1. Let P̂i be the set of transitive
predecessors of job i. The following set of jobs, which is a subset of B′, is
used in our implementations because the order based on which the jobs
in B are scheduled has not yet been defined and therefore computing B′
is not possible: i ∈ B

∣∣∣∣∣∣r̂j + pj +
∑

l∈(B∩P̂i)

pl + pi ≥ di

 .

Let τ ′2 ≥ 0 be the minimum shift to the left of the jobs belonging to set
B. Note that at least one of the values τ ′2 and τ2 equals zero. We define
the function Γ̂jk(t, τ1, τ2, τ

′
2) as follows:

Γ̂jk(t, τ1, τ2, τ
′
2) = Γjk(t, τ1, τ2) + τ ′2

∑
i∈B′

wi.

The values τ2 and τ ′2 cannot be negative. Therefore, we immediately infer
Γjk(t, τ1, τ2) ≤ Γ̂jk(t, τ1, τ2, τ

′
2). We need the following result:

Theorem 7.2. Γ̂jk(t, τ1, τ2, τ
′
2) is a valid lower bound for the gain of

interchanging jobs j and k.

179

7.2. Dominance properties

Proof. If τ ′2 = 0, then Γjk(t, τ1, τ2) = Γ̂jk(t, τ1, τ2, τ
′
2) and the theorem

holds based on Jouglet et al. (2004). If τ ′2 > 0, all jobs in B are shifted to
the left at least τ ′2 units. Also, τ2 equals zero because no job is shifted to
the right. For all jobs i ∈ B′ we have Ci(S1) ≥ Ci(S′1) ≥ di. Consequently,
τ ′2
∑
i∈B′ wi ≥ 0 is a lower bound for the gain of rescheduling jobs in B.

The value wj max{0, t+pj−dj}−wj max{0, r̂j+pj−dj} equals the gain of
rescheduling job j and the value wk max{0, r̂k + pk − dk}−wk max{0, t+
τ1 + pk − dk} equals the gain of rescheduling job k. By adding lower
bounds for rescheduling gains of all jobs in U = B ∪ {j, k}, a lower bound
for the gain of interchanging jobs j and k is obtained.

In a general setting (problem P), however, job interchanges are not
always feasible for every starting time t. We opt for verifying the feasibility
of an interchange by ensuring that it does not cause any violation of
deadlines and/or precedence constraints for all possible t = stj(S1). Let Ψ
be an upper bound for the completion time of the sequence S′1, computed
as follows:

Ψ = max

{
max{r̂j + pj , r̂k}+ pk,max

i∈B
{r̂i}

}
+
∑
i∈B

pi.

The following theorem provides the conditions under which for every pos-
sible t = stj(S1) interchanging jobs j and k is feasible.

Theorem 7.3. For each feasible schedule S1, an alternative feasible
schedule S′1 is created by interchanging jobs j and k, if the following con-
ditions are satisfied:

1. δ̄j − pj ≤ δ̄k − τ1 − pk or Ψ ≤ δ̂k;

2. τ2 = 0 or Ψ ≤ min
i∈B
{δ̂i}.

Proof. We examine under which conditions the jobs belonging to the set
U = B ∪ {j, k} do not violate any of their deadlines and/or precedence
constraints. Precedence constraints are not violated because jobs j, k ∈
EB are deliberately chosen such that Qk ∩ Qj = Qk and job j does not
violate its deadline simply because Cj(S

′
1) ≤ Cj(S1) ≤ δ̄j .

Condition 1 ensures that job k does not violate its deadline. We argue
that t = stj(S1) ≤ δ̄j − pj . If δ̄j − pj ≤ δ̄k − τ1 − pk holds, then we

infer Ck(S′1) = t + τ1 + pk ≤ δ̄k. Also, if Ψ ≤ δ̂k, then all unscheduled

jobs including j and k are completed at or before δ̂k. Note that δ̂k is

180

CHAPTER 7. A B&B ALGORITHM FOR GSMSP

preferred over δ̄k because δ̄k ≤ δ̂k, thus condition 1 is less violated, and
the inequality Ψ ≤ δ̂k also implies Ck(S′1) ≤ δ̄k.

Condition 2 verifies that no job in B violates its deadline. On the one
hand, if τ2 = 0, then no job in B is shifted to the right, which means
Ci(S

′
1) ≤ Ci(S1) ≤ δ̄i for each job i ∈ B. On the other hand, if τ2 > 0

and Ψ ≤ mini∈B{δ̂i}, then for all jobs i ∈ B we conclude: Ci(S
′
1) ≤

Ψ ≤ mini∈B{δ̂i} ≤ δ̂i. Again, δ̂i is preferred over δ̄i because of the same

reasoning as for the preference of δ̂k over δ̄k.

Jouglet et al. (2004) prove that if wj ≥ wk then the value Γjk(max{dj−
pj , r̂k + pk}, τ1, τ2) is the minimum gain obtained by interchanging jobs
j and k for the setting where deadlines and precedence constraints are
removed. We derive a more general result using the following lemma.

Lemma 7.1. Let f : t→ αmax{0, t−a}−βmax{0, t−b}+C be a function
defined on [u, v] for a, b, C ∈ R and α, β, u, v ∈ R≥0. The function f
reaches a global minimum at value t∗ computed as follows:

t∗(α, β, a, b, u, v) =
min{ū, v} if α ≥ β
u if α < β, b > a, α(v̄ − ū) ≥ β(v̄ − b)
v otherwise

where ū = max{u, a} and v̄ = max{v, b}.

Proof. Let f have a global minimum at value t∗. Depending on the values
of the parameters α, β, a and b, the function f behaves differently. We
discuss four possible cases for the parameter combinations to prove this
lemma (see also Figure 7.5). In the two first cases, we assume that α ≥ β.
Case (a): in this case, a ≤ b, and then f is constant on interval [u, a] and
is non-decreasing on interval [a, v], as shown in Figure 7.5(a). Case (b):
a > b, f is constant on interval [u, b], non-increasing on interval [b, a] and
non-decreasing on interval [a, v], in line with Figure 7.5(b). The following
results are valid for these two cases: 1- If u ≤ a ≤ v then t∗ = a. 2- If
a < u, t∗ = u because f is always non-decreasing on interval [u, v]. 3- If
a > v, t∗ = v because f is always non-increasing on interval [u, v]. We
conclude that t∗ = min{max{a, u}, v} for the first two cases.

In the next two cases, we assume that α < β. Case (c): a < b, f
is constant for [u, b], non-decreasing for [b, a] and decreasing for [a, v], as
shown in Figure 7.5(c). In this case, t∗ equals either u or v. On the one

181

7.2. Dominance properties

f

tC a b

(a)

f

tC
b a

(b)

f

t

C

a b

(c)

f

t

C

b a

(d)

Figure 7.5: Four possible cases for the parameter combinations in the proof
of Lemma 7.1.

hand, if α(b−max{a, u}) ≥ (β−α)(max{v, b}− b)⇔ α(v̄− ū) ≥ β(v̄− b)
then f(v) ≥ f(u) is inferred and t∗ = u is concluded. On the other hand,
if α(v̄ − ū) < β(v̄ − b) then t∗ = v is concluded. Case (d): a ≥ b, f is
constant for [u, b] and decreasing for [b, v]; see Figure 7.5(d). We find that
t∗ equals v for this case.

Corollary 7.1 below follows from Theorem 7.2, Theorem 7.3 and
Lemma 7.1, if we choose α = wj , β = wk, a = dj − pj , b = dk − τ1 − pk,
u = r̂k+pk, v = δj−pj and C = wk max{0, r̂k+pk−dk}−wj max{0, r̂j +
pj − dj} − τ2

∑
i∈B wi + τ ′2

∑
i∈B′ wi. Let st∗j be computed as follows:

st∗j = t∗(wj , wk, dj − pj , dk − τ1 − pk, r̂k + pk, δj − pj).

Corollary 7.1. Γ∗jk(τ1, τ2, τ
′
2) = Γ̂jk(st∗j , τ1, τ2, τ

′
2) is the minimum gain

obtained by interchanging jobs j and k, provided that for every possible
stj(S1) interchanging jobs j and k is feasible.

182

CHAPTER 7. A B&B ALGORITHM FOR GSMSP

Case (r̂
j

+
p
j
−
r̂ k
−
p
k
)

(p
j
−
p
k
)

(m
a
x

i∈
U
{r̂
i}
−
r̂ k
−
p
k
)

(r̂
j
−
r̂ k

)

(m
a
x

i∈
U
{r̂
i}
−
r̂ k
−
p
j
)

1 ≤ 0 < 0 ≥ 0 - -
2 ≤ 0 < 0 < 0 ≤ 0 > 0
3 ≤ 0 < 0 < 0 ≤ 0 ≤ 0
4 ≤ 0 < 0 < 0 > 0 -
5 ≤ 0 ≥ 0 ≥ 0 - -
6 ≤ 0 ≥ 0 < 0 - -
7 > 0 < 0 - - -
8 > 0 ≥ 0 - - -

Table 7.1: Interchange cases.

To compute Γ∗jk(τ1, τ2, τ
′
2), the values of τ1, τ2 and τ ′2 must be known.

We establish an exhaustive list of cases for which τ1, τ2 and τ ′2 can be
computed, which is summarized in Table 7.1. Given a particular case, the
values τ1, τ2 and τ ′2 are computed as follows:

τ1 =

0 Cases 1,5

maxi∈U{r̂i} − r̂k − pk Case 2

max{r̂j + pj ,maxi∈B{r̂i}} − r̂k − pk Cases 3,4,6

r̂j + pj − r̂k − pk Cases 7,8

τ2 =

pk − pj Case 1

maxi∈U{r̂i} − r̂k − pj Case 2

0 Cases 3,5,6

max{r̂j + pj ,maxi∈B{r̂i}} − r̂k − pj Case 4

r̂j − r̂k Case 7

r̂j + pj − r̂k − pk Case 8

183

7.2. Dominance properties

S2 σB B j B k σE

S′
2 σB B k B j σE

Figure 7.6: Schedules S2 and S′
2.

τ ′2 =

0 Cases 1,2,4,5,7,8

r̂k − r̂j Case 3

r̂k + pk −max{r̂j + pj ,maxi∈B{r̂i}} Case 6

Following the above results, the first part of Dominance rule 7.4 is derived.

Dominance rule 7.4 (DR7.4; first part). Given an FB node associated

with (σB , ∅), if there exist two non-identical jobs j, k ∈ EB with Qk∩Qj =
Qk and the inequality Γ∗jk(τ1, τ2, τ

′
2) > 0 holds, then (σB |j, ∅) dominates

(σB |k, ∅).

7.2.2.2 Interchanging jobs in a BB node

Let j, k ∈ EE where jobs j and k are not identical. We also assume that
any unscheduled predecessor of job k is also a predecessor of job j. In other
words, we have Pk ∩Pj ∩U = Pk ∩U . Consider a BB node of the search
tree with decision job k. The partial schedule associated with the current
node can be extended to a feasible schedule S2 in which job j is scheduled
before job k but after all jobs in the sequence σB . The set B is the set of
all remaining unscheduled jobs where B = U\{j, k}. Let schedule S′2 be
constructed by interchanging jobs j and k while keeping the order based
on which the jobs belonging to B will be scheduled. Figure 7.6 illustrates
schedules S2 and S′2.

For each t as the start time of job j in S2, we define a function ∆jk(t)
as follows:

∆jk(t) = wj max{0, t+ pj − dj}
− wk max{0, t+ pk − dk}
+ wk max{0, st(σE)− dk}

− wj max{0, st(σE)− dj} −max{0, pk − pj}
∑
i∈B

wi.

184

CHAPTER 7. A B&B ALGORITHM FOR GSMSP

In a BB node, for each t as the start time of job j, ∆jk(t) is a lower bound
of the gain of interchanging jobs k and j, if the conditions of Theorem 7.4
are satisfied. Theorem 7.4 provides the conditions on which for every
possible t = stj(S1) interchanging jobs j and k is feasible.

Theorem 7.4. For each feasible schedule S2, a feasible schedule S′2 can
be created by interchanging jobs j and k, if the following conditions are
satisfied:

1. st(σE) ≤ δ̂j;

2. pk − pj ≤ 0 or st(σE)− pj ≤ min
i∈B

δ̂i.

Proof. Similar to the proof of Theorem 7.3.

Corollary 7.2 follows from Theorem 7.4 and Lemma 7.1, if we choose
α = wj , β = wk, a = dj−pj , b = dk−pk, u = Cmax(σB), v = st(σE)−pk−
pj and C = wk max{0, st(σE)−dk}−wj max{0, st(σE)−dj}−max{0, pk−
pj}

∑
i∈B wi. Let st∗j

′ be computed as follows:

st∗j
′ = t∗(wj , wk, dj − pj , dk − pk,

Cmax(σB) +
∑

i∈Pj∩U
pi, st(σE)− pk − pj).

Corollary 7.2. ∆∗jk = ∆jk(st∗j
′) is the minimum gain obtained by in-

terchanging jobs j and k, provided that for every possible t = stj(S1)
interchanging jobs j and k is feasible.

Following the above results, the second part of Dominance rule 7.4 is
derived.

Dominance rule 7.4 (DR7.4; second part). Given a BB node associated
with (σB , σE), if there exist two non-identical jobs j, k ∈ EE with Pk ∩
Pj ∩ U = Pk ∩ U and ∆∗jk > 0, then (σB , j|σE) dominates (σB , k|σE).

7.2.3 Dominance rule based on job insertion

We describe a dominance rule based on job insertion. This dominance
rule, similar to the dominance rule based on job interchange, consists of
two parts. The first part deals with the insertion of a job in an FB node
whereas the second part deals with the insertion of a job in a BB node.

185

7.2. Dominance properties

S′′
1 σB j k B

Figure 7.7: Schedule S′′
1 .

7.2.3.1 Inserting a job in an FB node

In an FB node, let j, k ∈ EB where jobs j and k are not identical. Again
we assume that r̂k < r̂j + pj and r̂j < r̂k + pk, otherwise Dominance rule
7.2 enforces scheduling the job with smaller r̂ before the job with larger r̂
(remind that r̂j = r̄j and r̂k = r̄k because all predecessors of jobs j and k
have already been scheduled and therefore the branching decisions cover
precedence constraints propagation). Consider an FB node of the search
tree in which job k is scheduled after the jobs in sequence σB . Assume that
the partial schedule associated with the current node can be extended to
the feasible schedule S1 depicted in Figure 7.4. We construct a schedule
S′′1 by inserting the job j before job k while keeping the order of jobs
belonging to B. Figure 7.7 illustrates the construction of the schedule S′′1 .

Let τ3 be the maximum shift to the right of the jobs belonging to B,
which is computed as follows:

τ3 = max

{
0, r̂j + pj + pk −max

{
r̂k + pk,min

i∈B
{r̄i}

}}
.

For each t as the start time of job j in schedule S1, we define a function
Γ′jk(t, τ3) as follows:

Γ′jk(t, τ3) = wj max{0, t+ pj − dj}
− wk max{0, r̂j + pj + pk − dk}
+ wk max{0, r̂k + pk − dk}

− wj max{0, r̂j + pj − dj} − τ3
∑
i∈OJ

wi.

Job insertion, similar to job interchange, is not always feasible for every
starting time t of job j. We verify feasibility of an insertion by ensuring
that it does not cause any deadline and/or precedence-constraint violation
for all possible t = stj(S1). Let Ψ′ be an upper bound for the completion

186

CHAPTER 7. A B&B ALGORITHM FOR GSMSP

time of the sequence S′1, computed as follows:

Ψ′ = max

{
r̂j + pj + pk,max

i∈B
{r̂i}

}
+
∑
i∈B

pi.

The following theorem provides the conditions under which for every pos-
sible t = stj(S1) inserting job j before job k is feasible.

Theorem 7.5. For each feasible schedule S1, another feasible schedule S′′1
can be created by inserting job j before job k if the following conditions
hold:

1. r̂j + pj + pk ≤ δ̂k;

2. τ3 = 0 or Ψ′ ≤ min
i∈B
{δ̂i}.

Proof. Similar to the proof of Theorem 7.3.

Corollary 7.3 below follows from Theorem 7.5.

Corollary 7.3. Γ′∗jk(τ3) = Γ′jk(r̂k + pk, τ3) = Γjk(r̂k + pk, r̂j + pj − r̂k −
pk, τ3) is the minimum gain obtained by inserting job j before job k pro-
vided that for every possible t = stj(S1) inserting job j before job k is
feasible.

Following the above results, the first part of Dominance rule 7.5 is
derived.

Dominance rule 7.5 (DR7.5; first part). Consider an FB node associated
with (σB , ∅). If there exist two non-identical jobs j, k ∈ EB for which the
inequality Γ′∗jk(τ3) > 0 holds, then (σB |j, ∅) dominates (σB |k, ∅).

7.2.3.2 Inserting a job in a BB node

In a BB node, let j, k ∈ EE where jobs j and k are not identical. Consider
a node of the search tree in which job k is scheduled before sequence σE .
Assume that the partial schedule associated with the current node can
be extended to the feasible schedule S2 depicted in Figure 7.6. We also
construct a schedule S′′2 by inserting the job j to be scheduled after job k
but before the jobs in the sequence σE and by keeping the order of jobs
belonging to B. Figure 7.8 illustrates schedule S′′2 .

187

7.2. Dominance properties

S′′
2 σB B k j σE

Figure 7.8: Schedule S′′
2 .

For each t, which is the start time of job j in schedule S2, we define
the function ∆′jk(t) as follows:

∆′jk(t) = wj max{0, t+ pj − dj}
− wk max{0, st(σE)− pj − dk}
+ wk max{0, st(σE)− dk}
− wj max{0, st(σE)− dj}.

Similarly to the previous results, for each feasible schedule S2, a
feasible schedule S′′2 is constructed by inserting jobs j after job k, if

st(σE) ≤ δ̂j . The following corollary is obtained:

Corollary 7.4. ∆′∗jk = ∆′jk(Cmax(σB) +
∑
i∈Pj∩U pi) is the minimum

gain obtained by inserting job j after job k provided that st(σE) ≤ δ̂j.

Following the above results, the second part of Dominance rule 7.5 is
derived.

Dominance rule 7.5 (DR7.5; second part). Consider a BB node asso-
ciated with (σB , σE). If there exist two non-identical jobs j, k ∈ EE for
which the inequality ∆′∗jk > 0 holds, then (σB , j|σE) dominates (σB , k|σE).

7.2.4 Dominance rules on scheduled jobs

The dominance theorem of dynamic programming (see Jouglet et al., 2004)
is another existing theorem that can be used to eliminate nodes in the
search tree. It compares two partial sequences that contain identical sub-
sets of jobs and eliminates the one having the larger total weighted tardi-
ness. When total weighted tardiness values are the same, then only one
of the sequences is kept. Let us consider two feasible partial sequences σ1

and σ2 (σ2 is a feasible permutation of σ1) of k jobs, where k < n. Let C
be the set of jobs in either σ1 or σ2. We are going to decide whether it is
advantageous to replace σ2 by σ1 in all (partial) schedules in which σ2 or-
ders the last k jobs. The set of scheduled jobs and the set of unscheduled

188

CHAPTER 7. A B&B ALGORITHM FOR GSMSP

jobs are identical for both σ1 and σ2. Sequence σ1 is as good as sequence
σ2 if it fulfills one of the following conditions:

1. Cmax(σ1) ≤ Cmax(σ2) and TWT(σ1) ≤ TWT(σ2);

2. Cmax(σ1) > Cmax(σ2) and the following inequality also holds:

TWT(σ1) + (min
i∈U
{r̄σ1
i } −min

i∈U
{r̄σ2
i })

∑
i∈U

wi ≤ TWT(σ2),

where r̄σ1
i is the updated release date associated with the sequence

σ1 and r̄σ2
i is the updated release date associated with the sequence

σ2.

Jouglet et al. (2004) determine the sequences that can be replaced by
a dominant permutation. They find that sequence σ1 dominates sequence
σ2 if the following two conditions hold:

1. sequence σ1 is as good as sequence σ2;

2. sequence σ2 is not as good as σ1 or σ1 has lexicographically smaller
release dates than σ2.

Note that the second condition enforces a tie-breaking rule where a lexi-
cographical number associated to each sequence is computed and among
those sequences that are equivalent, the one with lower lexicographic num-
ber is selected. To avoid conflicts with Dominance rule 7.2, jobs are
renumbered in non-decreasing order of their release dates rj .

Dominance rule 7.6 (DR7.6). If there exists a better feasible permu-
tation of σB and/or a better feasible permutation of σE, then the node
(σB , σE) is fathomed.

If σE = ∅ and there is a better feasible permutation of σB , then the
dominance is proven similarly to Theorem 13.6 in Jouglet et al. (2004).
If σE 6= ∅, then all jobs belonging to the set U will be scheduled between
Cmax(σB) and st(σE) = Cmax(σB)+

∑
j∈U pj . Therefore, all permutations

of σE start at time st(σE) and if there exists at least one better feasible
permutation of σE , then fathoming the node associated with (σB , σE)
does not eliminate the optimal solution.

Dominance rule 7.6 where only permutations of the last k jobs are
considered, is referred to as DRk

7.6. Computing DRn
7.6 amounts to enumer-

ating all O(n!) feasible solutions, which would yield an optimal solution

189

7.3. Initial upper bound

k
n

20 30 40 50
2 0.0043 - - -
3 0.0038 0.045 - -
4 0.0039 0.039 5.157 (1) -
5 0.0042 0.039 3.499 15.895 (15)
6 0.0043 0.041 3.130 13.358 (13)
7 0.0050 0.046 4.741 (1) 14.301 (15)
8 - 0.092 7.459 (1) 22.470 (17)

Table 7.2: Average CPU times (in seconds; first number) and number of un-
solved instances within the time limit (between brackets, if any;
out of 864) for different choices of k in BB1 run on Ins.

but is computationally prohibitive. In our B&B algorithm, we therefore
choose k < n. There is a trade-off between the computational effort
needed to compute DRk

7.6 and the improvement achieved by eliminating
dominated nodes. Based on initial experiments (see Table 7.2; more de-
tails on the instance generation are provided in Section 5.4), we observe
that the algorithms perform worse when k > 6. We also notice that it is
not efficient to use DRk

7.6 when k > |U | because the computational effort
to solve the subproblem consisting of the remaining |U | jobs is less than
the computational effort needed to enumerate all feasible permutations of
the last k jobs. Thus, k = min{|σB |, |U |, 6} while scheduling forward and
k = min{|σE |, |U |, 6} when scheduling backward.

We observe that in BB2 with unequal release dates, at certain mo-
ments during the search procedure, we switch from forward to backward
branching, which forces us to start with k = |σE | = 0 and we thus lose a
number of pruning opportunities.

7.3 Initial upper bound

Although for most of the instances the B&B algorithm finds a reasonably
good solution (a tight upper bound) quickly, there are instances for which
feasible solutions are encountered only after a large part of the search
tree has been scanned. Therefore, we initialize the upper bound in the
root node of the B&B algorithm using a stand-alone (heuristic) procedure,
which we refer to as time-window heuristic (TWH).

190

CHAPTER 7. A B&B ALGORITHM FOR GSMSP

Algorithm 7.1 Time-window heuristic (TWH)

Input: a sequence σ

1: for itr = 1 to 2 do
2: IMPROVE BY SWAP
3: k = 0
4: while k ≤ 50 do
5: if k even then
6: start = 0
7: else
8: start = min{minsize,maxsize/2}
9: while start+minsize ≤ n do

10: end = min{start+maxsize, n}
11: SP← CONST SP(σ, start, end)
12: σSP ← SOLVE BB(SP)
13: σ′ ← COPYSEQ(σ, σSP, start, end)
14: if TWT(σ′) < TWT(σ) then
15: σ ← σ′

16: k = k + 1

Output: TWT(σ)

The key idea of our TWH is to iteratively locally improve a given
sequence of jobs within a varying time window (Algorithm 7.1); similar
ideas have already been proposed in the literature (Debels and Vanhoucke,
2007; Kinable et al., 2014). It starts with any given sequence (note that
finding a feasible sequence might be very difficult for some instances, so
we also allow infeasible sequences). Then to locally improve the solution,
the algorithm constructs a number of subproblems. Each subproblem
is defined by two positions: a start position and an end position. The
subproblem tries to optimally resequence the jobs that are positioned
between the given start and end positions in the initial sequence such
that the completion time of the subsequence does not exceed the start
time of the job in the position end + 1. This additional condition is
fulfilled by updating the deadline of all jobs j in the subproblem to δSPj =
min{δj , stend+1(σ)} and updating the release date of all jobs j in the
subproblem to rSPj = max{rj , Cstart−1(σ)}.

In TWH, the subprocedure IMPROVE BY SWAP is a naive local
search procedure in which each pair of jobs is examined for swapping
exactly once, in a steepest descent fashion. The length of the subse-

191

7.3. Initial upper bound

Instance Set total feas
TWH

fnd opt gap

InsL
n = 30 432 401 397 300 0.012
n = 40 432 395 392 313 0.011
n = 50 432 397 395 302 0.025

InsPAN
n = 30 100 100 100 59 0.003
n = 40 100 100 100 72 0.001
n = 50 94∗ 94 89 50 0.001

InsTAN n = 40 875 875 875 542 0.019
n = 50 875 875 875 545 0.015

∗ the optimal solutions are only available for 94 instances.

Table 7.3: The performance of TWH

quence to be reoptimized is in between minsize = 10 and maxsize =
min{max{n/2, 10}, 20}. Given a start and an end position, CONST SP
constructs the associated subproblem and SOLVE BB solves the subprob-
lem using the same branch-and-bound algorithms explained in this chap-
ter. A new sequence is constructed using COPYSEQ.

The input sequence for TWH is the result of a dynamic priority rule
that stepwise schedules jobs (from time 0 onwards) that are eligible ac-
cording to the precedence constraints (meaning that all predecessors were
previously already selected) and whose release date has already been
reached; if no job is eligible in this way, then the algorithm proceeds
to the earliest ready time of all jobs for which all predecessors have al-
ready been scheduled. If multiple jobs are eligible, then priority is given
to the one with the earliest deadline and the lowest processing time. In
the computation of the eligible set of jobs the deadline constraints are
ignored. Therefore, the resulting sequence might not be feasible to P. In
such cases, we add a large infeasibility cost to the objective function in
the hope of finding a feasible solution during TWH.

The upper bound that is the output of TWH improves the runtime
for those instances for which the branch-and-bound algorithm fails to find
a feasible solution fast. Furthermore, this upper bound turns out to be
optimal for most of the instances of P and for those instances for which
the optimal solution is not found, the optimality gap is very low; see
Table 7.3 (see Section 5.4 for more details on the instances in InsL and
Section 7.4.3 for more details on the instances in InsPAN and InsTAN).
To evaluate the efficiency of TWH, we have run some computational ex-

192

CHAPTER 7. A B&B ALGORITHM FOR GSMSP

InsL
InsPAN InsTAN

n = 30 n = 40 n = 50 n = 40 n = 50
0.04 0.09 0.17 0.08 0.31 0.66

Table 7.4: Average CPU times (in seconds) of upper bound computation for
different instance sets

periments, the results of which are reported in Table 7.3 and Table 7.4.
In Table 7.3, column total contains the total number of instances and
the values in column feas represent the number of instances for which at
least one feasible solution exists. Column fnd reports the number of times
TWH finds a feasible solution, column opt counts the number of optimal
solutions found and column gap states the average optimality gap, aver-
aged only for the instances for which the optimal solution was not found
by TWH. The average optimality gap is computed as the average value
of ((UB − OPT)/UB), with UB the output of TWH. Table 7.4 reports
the average CPU times for the same subset of instances studied in Ta-
ble 7.3. Note that the column that reports the average CPU times for
InsPAN pertains to all instances with n = 30, 40 and 50.

7.4 Computational results

All algorithms have been implemented in VC++ 2010. All computational
results were obtained on a laptop Dell Latitude with 2.6 GHz Core(TM)
i7-3720QM processor, 8GB of RAM, running under Windows 7. In all
our experiments, the time limit is set to 1200 seconds. If an instance is
not solved to guaranteed optimality, it is said to be ‘unsolved’ for the
procedure. Throughout this section, we report averages computed only
over the solved instances.

Since LBSSδ
2 and LBSSr

2 require the same computational effort, we de-
cide not to use LBSSr

2 in our B&B algorithms, where enumeration of child
nodes is more efficient than extra computation of a weak bound. also,
since LBSSr

3 and LBSSδ
3 are equally expensive in terms of computational

effort, we decide not to use LBSSr
3 .

In our final implementation, we will not compute all the bounds for all
the nodes because this consumes too much effort. We start with comput-
ing LBT, LB0 and LBSV1 for the unscheduled jobs. Let Sbest be the best
feasible schedule found. If the node is fathomed by DR7.1, then we back-

193

7.4. Computational results

Scenario DR7.2 DR7.3 DR2
7.6 DR7.4 DR7.5 DRk7.6 DR7.1

1 X X X - - - -
2 X X X X - - -
3 X X X X X - -
4 X X X X X X -
5 X X X - X X X
6 X X X X - X X
7 X X - X X - X
8 X X X X X X X

Table 7.5: The list of scenarios.

track; otherwise if TWT(SP) + dLB0 + LBSV1e × 1.4 < TWT(Sbest) then
we do not compute the remaining lower bounds and continue branching.
If the latter equality does not hold, then we anticipate that with a better
bound we might still be able to fathom the node, and we compute LB3

and/or LBSSδ
3 . For all lower bounds we choose kmax = 0 if OS < 0.5 and

kmax = 1 otherwise.

7.4.1 Dominance rules

In each node of the B&B algorithm, dominance rules are tested. Based on
some preliminary experiments, we find that applying the rules in the fol-
lowing order performs well, and we will therefore follow this order through-
out the algorithm:

DR7.2,DR7.3,DR2
7.6,DR7.4,DR7.5,DRk

7.6,DR7.1.

In order to evaluate the effectiveness of the rules, we examine a number
of scenarios with respect to the selection of the implemented bounds; the
list of scenarios is given in Table 7.5. Scenario 1 includes the simplest
combination of dominance rules, namely DR7.2, DR7.3 and DR2

7.6. From
Scenario 2 to Scenario 4, extra rules are gradually added. In Scenario
5, all dominance rules are active except DR7.4, and in Scenario 6, only
DR7.5 is inactive. Scenario 7 similarly includes all dominance rules except
DR7.6. Finally, in Scenario 8, all dominance rules are active.

For each of these implementations, we report the average CPU times
and the average number of nodes explored in the search tree in Table 7.6;
the results pertain to the instances of Ins with n = 20, 30. Scenarios 2
and 3 show the effect of DR7.4 and DR7.5. In Scenario 2, DR7.4 improves

194

CHAPTER 7. A B&B ALGORITHM FOR GSMSP

n = 20 n = 30
Method Scenario CPU Nodes CPU Nodes

BB1

1 0.004 12521 - -
2 0.003 4310 2.956 4388157
3 0.003 4279 3.547 4382728
4 0.004 839 0.260 48410
5 0.008 1912 0.075 10095
6 0.003 488 0.016 3442
7 0.772 1044361 - -
8 0.003 487 0.039 3451

BB2

1 0.003 11698 - -
2 0.002 3609 1.506 2182869
3 0.002 3271 1.482 1669982
4 0.003 980 0.260 91985
5 0.004 1658 0.135 30474
6 0.002 490 0.055 9750
7 0.155 239389 - -
8 0.002 427 0.047 7464

‘-’ means that the implementation fails to solve many instances within the time limit.

Table 7.6: The effect of the dominance rules.

the performance of both algorithms whereas in Scenario 3, DR7.5 has a
beneficial effect only for BB2. Scenario 4 reflects the impact of DR7.6 for
k jobs.

Comparing Scenario 5 to Scenario 8, we see that inclusion of DR7.1

has a strong beneficial effect on both algorithms; the effect is strongest in
BB2 because tighter bounds can be computed by scheduling backward.
From Table 7.6, we learn that apart from DR7.2, which is always crucial in
total tardiness scheduling problems, the most important dominance rule
is DR7.6: deactivating this rule triggers a huge increase in the average
number of nodes and the average CPU times; incorporating DR7.4 also has
a marked effect (compare Scenarios 5 and 8). Among all dominance rules
tested, DR7.5 is the least important; removing DR7.5 slightly increases
the node count and the runtimes in BB2. In BB1, removing DR7.5 even
decreases the number of nodes and the runtimes; it turns out that for
n > 30, however, the effect of DR7.5 is also (slightly) beneficial for BB1,
and so we decide to adopt Scenario 8 as the final setting in which the
experiments in the following sections will be run.

195

7.4. Computational results

α Method
n

10 20 30

10

ASF 0.81 – –
ASF′ 0.80 – –
TIF 0.43 2.02 53.47 (3)
TIF′ 0.64 2.97 88.17

(12)
BB1 0.00 0.00 0.02
BB2 0.00 0.00 0.03

100

ASF 0.92 – –
ASF′ 0.95 – –
TIF 6.54 – –
TIF′ 21.78 – –
BB1 0.00 0.00 0.06
BB2 0.00 0.00 0.06

Table 7.7: Average CPU times (in seconds) and number of unsolved instances
within the time limit (out of 432) for the MIP formulations and the
B&B algorithms run on Ins with n = 10, 20 and 30.

As a side note, we observe that for all the foregoing dominance rules,
after the root node, omitting the precedence constraints implied by sets
Qj and Pj from the updates of r̄j and δ̄j has only little effect. We will
therefore not include these precedence constraints into the updated re-
lease dates and deadlines and thus avoid the additional computational
overhead.

7.4.2 Branch-and-bound algorithms

In this section we discuss the performance of our B&B algorithms. In
Table 7.7 we compare the performance of BB1 and BB2 with the MIP
formulations discussed in Section 5.3. In this table as well as in the
following, we report the average runtime and the number of unsolved
instances (if there are any).

Based on Table 7.7, the B&B algorithms BB1 and BB2 both clearly
outperform the MIP formulations regardless of the size of the processing
times. Table 7.8 shows the performance of BB1 and BB2 applied to the
larger instances of Ins (n = 40 and 50) that cannot be solved by the MIP
formulations. On average, BB1 performs better than BB2, although this

196

CHAPTER 7. A B&B ALGORITHM FOR GSMSP

α Method
n

40 50

10
BB1 1.26 16.99 (1)
BB2 1.65 35.73 (6)

100
BB1 5.00 14.00 (12)
BB2 3.38 (1) 18.28 (12)

Table 7.8: Average CPU times (in seconds) and number of unsolved instances
within the time limit (out of 432) for BB1 and BB2 run on Ins with
n = 40 and 50.

Method n
OS

0 0.25 0.50 0.75

BB1
30 0.08 0.04 0.02 0.01
40 11.85 0.55 0.10 0.02
50 50.81 (13) 12.63 0.68 0.06

BB2
30 0.05 0.10 0.03 0.01
40 7.37 (1) 2.37 0.32 0.03
50 44.17 (12) 57.12 (6) 8.66 0.10

Table 7.9: Average CPU times (in seconds) and number of unsolved instances
within the time limit (out of 216) for different choices of n and OS
in BB1 and BB2 run on Ins.

does not hold for all parameter settings (more details follow below). BB1
solves all instances with 40 jobs and fails to solve around 1.5% of the
instances with 50 jobs. BB2 fails to solve one instance with 40 jobs and
around 2% of the instances with 50 jobs. We will indicate below that all
these unsolved instances belong to a specific class; it is worth mentioning
that the difficult instances are not the same for the two B&B algorithms.

The number of precedence constraints obviously affects the perfor-
mance of the algorithms. On the one hand, by adding precedence con-
straints, the set of feasible sequences shrinks; on the other hand, the lower
bounds also become less tight. The net result of these two effects is a priori
not predictable. For instance classes without release dates and deadlines
(rj = 0 and δj = ∞), the quality of the lower bound is very good when
OS = 0, therefore the effect of a weaker bound due to higher OS will be
more pronounced than when release dates and deadlines are also imposed.

To identify the classes of difficult instances, we focus on case n = 50.
Table 7.10 shows the outcomes of the experiments for each combination

197

7.4. Computational results

M
e
th

o
d

τ ρ
OS

0 0.25 0.50 0.75

BB1

0
0.05 0.27 0.50 0.18 0.03
0.25 26.84 11.89 0.51 0.05
0.50 127.59 25.92 1.96 0.06

0.5
0.05 1.60 5.16 0.44 0.05
0.25 35.16 (2) 8.86 0.72 0.07
0.50 439.09 (11) 57.55 1.86 0.09

1
0.05 1.77 0.44 0.15 0.04
0.25 1.14 0.50 0.16 0.05
0.50 0.49 2.86 0.16 0.06

BB2

0
0.05 0.21 1.01 0.25 0.03
0.25 0.27 2.79 0.36 0.05
0.50 0.49 3.11 0.37 0.06

0.5
0.05 1.66 76.47 5.97 0.12
0.25 77.95 (1) 158.78 17.96 0.20
0.50 544.25 (11) 338.02 (6) 52.42 0.30

1
0.05 1.75 0.43 0.15 0.06
0.25 1.09 0.51 0.29 0.05
0.50 0.47 3.15 0.19 0.05

Table 7.10: Average CPU times (in seconds) and number of unsolved instances
within the time limit (out of 24) for different choices of τ , ρ and
OS in BB1 and BB2 run on Ins with n = 50.

of τ , ρ and OS. According to this table, the most time-consuming class
of instances is the one where release dates are neither loose nor tight
(τ = 0.50), due dates are loose (ρ = 0.50) and the set of precedence
constraints is empty (OS = 0). No clear pattern can be distinguished for
the algorithmic performance as a function of the tightness of the deadlines,
so these results are excluded from the table. The unsolved instances are
distributed differently for the two algorithms, although τ = 0.5 in all
and OS = 0 in most of the unsolved instances. For example, BB1 solves
all instances with OS = 0.25 whereas BB2 does not solve six of these
instances. Also, BB1 fails to solve two instances with ρ = 0.25 whereas
this occurs for only one instance with ρ = 0.25 for BB2.

We will represent each class of instances by a triple (τ, ρ,OS). As
mentioned before, the hardest class of instances for both algorithms is

198

CHAPTER 7. A B&B ALGORITHM FOR GSMSP

(0.5, 0.5, 0). The class (0, 0.5, 0), which seems to be the third most difficult
class for BB1, is very easy for BB2. Also, (0.5, 0.5, 0.25), which is the
second hardest class for BB2, does not require very high runtimes from
BB1. We infer that BB2 is better than BB1 when release dates are equal
(zero); in this case (cf. Section 7.1) stronger bounds are computed in
backward scheduling. Conversely, BB1 is better than BB2 when release
dates are not equal (especially when τ = 0.50). With unequal release
dates, backward branching cannot start from the root node but rather
only after a certain number of jobs have already been scheduled. Because
branching forward increases the earliest possible starting and completion
times of jobs, the trivial lower bound and the Lagrangian-based lower
bounds will be stronger for BB1 than those for BB2. As explained at the
end of Section 7.2.4 and contrary to BB2, in BB1 k is never restarted
in the computation of DRk

7.6 and therefore we do not lose any pruning
opportunity.

7.4.3 Experiments for subproblems of P

In this section, we present the results of our B&B algorithms for subprob-
lems of P that have also been studied in earlier literature. Two sets of
benchmark instances for subproblems of P are also used in our experi-
ments; these are referred to as InsTAN and InsPAN and are discussed in
Sections 7.4.3.1 and 7.4.3.2, respectively.

7.4.3.1 A single-machine problem with precedence constraints:
1|prec|

∑
wjTj

One special case of P is single machine scheduling with precedence con-
straints where the objective is to minimize the total weighted tardiness.
From our observations in Section 7.4.2, we know that we only need to con-
sider BB2 for this subproblem because all release dates are zero, and so
we compare the performance of BB2 with the SSDP algorithm proposed
by Tanaka and Sato (2013). We apply both algorithms to the benchmark
instances InsTAN obtained from Tanaka and Sato (2013). For these in-
stances, parameter Pr denotes the probability that each arc (i, j) ∈ N×N
with i 6= j is present in the precedence graph. Note that the resulting
precedence graph may contain transitive arcs. In such cases, the transi-
tive reduction is computed and used as input to BB2. Table 7.11 shows
the computational results for our B&B algorithms and for the SSDP al-
gorithm (which was run on the same computer). SSDP solves instances

199

7.4. Computational results

Pr
n = 40 n = 50

BB2 SSDP BB2 SSDP
0 0.04 0.04 0.26 0.06
0.005 0.49 0.35 1.83 0.71
0.01 0.61 0.51 4.98 2.05
0.02 0.80 1.67 15.79 6.40
0.05 1.48 6.01 32.11 37.13
0.10 0.57 9.71 2.64 32.78
0.20 0.09 1.67 0.18 3.61

Table 7.11: Average CPU times (in seconds) for different choices of Pr and n
in BB2 and SSDP run on InsTAN.

in very short runtimes when there are no precedence constraints. SSDP
performs worse, however, when the precedence graph is dense, while the
B&B algorithms will tend to perform better exactly in this case. To con-
clude this comparison, we underline the fact that our algorithms have
been developed to solve the more general setting in which time windows
are also imposed, whereas the instance set examined here does not contain
such time windows.

7.4.3.2 A single machine problem with time windows:
1|rj , δj |

∑
wjCj

Another special case of P is the single machine problem with time windows
where the objective function is to minimize the total weighted sum of the
completion times. We run our B&B algorithms on one of the instance sets
provided by Pan and Shi (2005), which has been introduced as problem set
(I) in which the parameters α and β define the ranges for the generation
of release dates and deadlines, respectively. We refer to this instance
set as InsPAN. To solve these instances, we set all due dates to zero.
Table 7.12 shows the computational results of BB1 and BB2 applied to
InsPAN. Our B&B algorithms both solve 394 out of the 400 instances to
optimality within the time limit of 1200 seconds. Although a consistent
pattern cannot be recognized, it seems that the hardest instances belong
to the subsets where α = 1 and β = 16. Since we do not have access to
the code of Pan and Shi, direct comparisons are difficult, but overall our
runtimes are of the same order of magnitude, although the most difficult
instances for Pan and Shi are not the most difficult ones for our code, and
vice versa.

200

CHAPTER 7. A B&B ALGORITHM FOR GSMSP

Contrary to the discussion in Section 7.4.2, we notice that our two al-
gorithms behave quite similarly for these instances. This can be explained
as follows. First, for all members of InsPAN, release dates are non-zero,
such that BB2 follows the same steps as BB1 until the release dates of all
remaining jobs are less than the decision time. Second, the fact that due
dates are zero makes all jobs late already in the root node and thus the
scheduling of any job (even in the beginning of the schedule) has a posi-
tive contribution in the objective value. For the case where due dates are
non-zero, scheduling backward is advantageous because jobs are mostly
early in the beginning of the schedule, so they have zero contribution in
the objective value.

7.5 Summary and conclusion

In this chapter, we have developed a branch-and-bound algorithm that
solves the instances of the GSMSP to guaranteed optimality. Computa-
tional results show that our approach is effective in solving medium-sized
instances, and that it compares favorably with two straightforward linear
formulations. Our procedure was also compared with two existing meth-
ods, namely an SSDP algorithm and a B&B algorithm, for special cases of
the problem. The SSDP algorithm requires only very low runtimes in the
absence of precedence constraints, but it performs worse when the prece-
dence graph is dense, which is exactly the easiest setting for our B&B
algorithms.

201

7.5. Summary and conclusion

n α β
Method

BB1 BB2

20

0.5

1 0.006 0.005
2 0.008 0.005
4 0.010 0.008
8 0.012 0.010
16 0.012 0.010

1

1 0.002 0.002
2 0.002 0.002
4 0.004 0.004
8 0.013 0.011
16 0.009 0.008

30

0.5

1 0.026 0.022
2 0.040 0.047
4 0.055 0.053
8 0.100 0.110
16 0.105 0.107

1

1 0.007 0.008
2 0.033 0.033
4 0.017 0.018
8 0.161 0.160
16 0.092 0.087

40

0.5

1 0.111 0.123
2 0.306 0.301
4 1.419 1.451
8 2.512 2.477
16 0.987 0.967

1

1 0.014 0.012
2 0.234 0.165
4 0.161 0.170
8 0.267 0.282
16 0.867 0.875

50

0.5

1 0.782 0.784
2 3.028 3.038
4 11.082 11.152
8 17.801 17.718
16 100.041 100.253

1

1 0.036 0.038
2 1.660 1.638
4 13.466(1) 13.686(1)
8 71.697(2) 72.407(2)
16 77.316(3) 77.406(3)

Table 7.12: Average CPU times (in seconds; first number) and number of
unsolved instances within the time limit (between brackets, if any;
out of 10) for different choices of n, α and β in BB1 and BB2 run
on InsPAN.

202

List of Figures

1.1 The precedence network for the example project. 9

2.1 A copy of Figure 1.1. 34

2.2 An example reaction. 37

2.2 An example reaction (continued). 38

2.3 Chance arcs leaving (s8, 2, {1, 4}, 0). 41

2.4 Transition from s to s′ at time t. 42

2.5 Decision arcs leaving (s9, 2, {1, 4}, 0). 42

2.6 A part of the network of Model 1 associated with the ex-
ample in Section 2.2.1.4. 45

2.7 A flexible transition from s to s′ at time t. 49

2.8 Difference between Model 1 and Model 2. 51

2.9 An example of a cut and a continuation. 53

2.10 The difference in reaction possibilities between Model 2 and
Model 3. 56

2.11 The precedence graph for the instance of the counterexample. 71

3.1 A copy of Figure 1.1. 77

3.2 The precedence network for the example project including
extra (dashed) arcs for X1. 78

3.3 Gantt charts associated with schedules s7 and s9 in the
example of Section 3.1.2. 82

3.4 The graphs associated with the example in Section 3.1.2. . 83

3.5 The tree associated with the example in Section 3.1.4. . . 90

3.6 The average contributions of different classes of reaction . 95

3.7 The average contributions of different classes of reaction
when the multi-stage method is used and for the setting
where wb = 25 and wr = 0. 102

203

List of Figures

4.1 Branching scheme 1. 122
4.2 Branching scheme 2. 126
4.3 Logarithm of number of oracle calls vs. number of casets. 132

5.1 Precedence graph G(N ′, A). 145

6.1 This figure shows (a) an example graphG, (b) an associated
VSP sub-graph G′ and (c) G′′. 157

6.2 The forbidden subgraph for VSP graphs. 160
6.3 Modified traversal algorithm applied to the input graph in

(a). 162

7.1 The structure of a partial schedule. 172
7.2 Branching strategy 1 for the example in Section 5.2 without

dominance rules and without lower bounds. 174
7.3 Branching strategy 2 for the example in Section 5.2 without

dominance rules and without lower bounds. 175
7.4 Schedules S1 and S′1. 178
7.5 Four possible cases for the parameter combinations in the

proof of Lemma 7.1. 182
7.6 Schedules S2 and S′2. 184
7.7 Schedule S′′1 . 186
7.8 Schedule S′′2 . 188

204

List of Tables

1.1 The literature on the proactive and reactive RCPSP. . . . 15

2.1 The distribution of activity durations and the weights of
the activities for the first reaction. 34

2.2 A given set S for the example project. 35

2.3 Summary of the results for Model 1. 63

2.4 Summary of the results for Model 2. 64

2.5 Summary of the results for Model 3. 65

2.6 Summary of the results for Model 4. 66

2.7 Average percent deviation of M-Model 2 from CONV for
different values of parameters λ,wb, wr and α. 69

2.8 Average percent deviation of Model 3 from CONV for dif-
ferent values of parameters wb, wr and α and fixed value of
parameter λ = 1. 69

2.9 Average percent deviation of Model 4 from CONV for dif-
ferent values of parameters wb, wr and α and fixed value of
parameter λ = 1. 70

3.1 A copy of Table 2.1. 77

3.2 A copy of Table 2.2. 78

3.3 The ratio (in percentage) of the selection-based reactions
to all reactions. 92

3.4 The average combined cost when only selection-based re-
actions are considered (SBCC), that when all reactions are
considered (CC) and the average deviation (in percentage)
of SBCC from CC. 93

3.5 The ratio (in percentage) of the buffer-based reactions to
all reactions. 93

205

List of Tables

3.6 The ratio (in percentage) of the selection-but-not-buffer-
based reactions to all reactions. 94

3.7 The average combined cost when only buffer-based reac-
tions are considered (BBCC), that when all reactions are
considered (CC) and the average deviation (in percentage)
of BBCC from CC. 95

3.8 The ratio (in percentage) of the buffer-based reactions to
all reactions for different classes of instances. 96

3.9 Summary of the results for Model 3. 101

3.10 The detailed CPU times for different sub-procedures. . . . 102

3.11 The effect of the different parameters for wb = 25 and wr = 0.103

3.12 The effect of the different parameters wb = 25 and wr = 50. 103

3.13 The effect of the different parameters wb = 50 and wr = 0. 104

3.14 The effect of the different parameters wb = 50 and wr = 50. 104

3.15 The associated p-values of the algorithm parameters for
different problem settings. 105

4.1 The set P̂ of realizations for the example. 115

4.2 The matrix δ for the example. 115

4.3 The matrix σ for the example. 116

4.4 Different priority rules obtained by different combinations
of the following three criteria: total slack (TS), number of
casets (NEC) and influence factor (IF). 120

4.5 Average CPU times (in seconds) and number of solved
instances within the time limit (out of 960) for different
choices of priority rules and different branching schemes. . 129

4.6 The average percentage deviation of the required CPU time
using (BS1,Rule 3) in a depth-first mode from the required
CPU time using (BS1,Rule 1) in a depth-first mode (in
percentage) and the number of instances solved in both
settings (out of 48) for different choices of 1− α̂ and m. . 130

4.7 The detailed computational results for our B&B algorithm. 131

4.8 The average percent deviation between the lower bound
and the objective value of the best found (or optimal) so-
lution for different choices of 1− α̂ and m. 132

4.9 The effect of implementing the hash table (HT) and/or the
linked list (LL) on our B&B algorithm. 133

4.10 The average CPU time and the number of instances solved
(out of 48) for different choices of 1− α̂ and large m values. 133

206

LIST OF TABLES

4.11 The detailed computational results for our B&B algorithm
ran on instances with medium variances. 134

4.12 The detailed computational result for our B&B algorithm
ran on instances with high variances. 135

4.13 The number of instances solved to optimality for different
time limits (10 seconds, 1 minute, 10 minutes and 1 hour),
different methods and different choices of 1 − α̂ and large
m values. 136

5.1 Job characteristics. 145

5.2 Average CPU times (in seconds) and number of unsolved
instances within the time limit (out of 432) for the MIP
formulations run on Ins with n = 10, 20 and 30. 150

6.1 The average percentage deviation between LB1 and LB0

tested on InsL. 159

6.2 The average deviation between LB1 and LB0 163

6.3 Average percentage gap from optimal value. 169

7.1 Interchange cases. 183

7.2 Average CPU times (in seconds; first number) and number
of unsolved instances within the time limit (between brack-
ets, if any; out of 864) for different choices of k in BB1 run
on Ins. 190

7.3 The performance of TWH 192

7.4 Average CPU times (in seconds) of upper bound computa-
tion for different instance sets 193

7.5 The list of scenarios. 194

7.6 The effect of the dominance rules. 195

7.7 Average CPU times (in seconds) and number of unsolved
instances within the time limit (out of 432) for the MIP
formulations and the B&B algorithms run on Ins with n =
10, 20 and 30. 196

7.8 Average CPU times (in seconds) and number of unsolved
instances within the time limit (out of 432) for BB1 and
BB2 run on Ins with n = 40 and 50. 197

7.9 Average CPU times (in seconds) and number of unsolved
instances within the time limit (out of 216) for different
choices of n and OS in BB1 and BB2 run on Ins. 197

207

List of Tables

7.10 Average CPU times (in seconds) and number of unsolved
instances within the time limit (out of 24) for different
choices of τ , ρ and OS in BB1 and BB2 run on Ins with
n = 50. 198

7.11 Average CPU times (in seconds) for different choices of Pr
and n in BB2 and SSDP run on InsTAN. 200

7.12 Average CPU times (in seconds; first number) and number
of unsolved instances within the time limit (between brack-
ets, if any; out of 10) for different choices of n, α and β in
BB1 and BB2 run on InsPAN. 202

208

Bibliography

Abbasi, B., Shadrokh, S., and Arkat, J. Bi-objective resource-constrained
project scheduling with robustness and makespan criteria. Applied
mathematics and computation, 180(1):146–152, 2006.

Abdul-Razaq, T. and Potts, C. Dynamic programming state-space relax-
ation for single-machine scheduling. Journal of the Operational Research
Society, 39(2):141–152, 1988.

Abdul-Razaq, T., Potts, C., and Wassenhove, L. V. A survey of algorithms
for the single machine total weighted tardiness scheduling problem. Dis-
crete Applied Mathematics, 26:235–253, 1990.

Akkan, C., Külünk, M. E., and Koçaş, C. C. Finding robust timeta-
bles for project presentations of student teams. European Journal of
Operational Research, 249(2):560–576, 2016.

Akturk, M. and Ozdemir, D. An exact approach to minimizing total
weighted tardiness with release dates. IIE Transactions, 32:1091–1101,
2000.

Akturk, M. and Ozdemir, D. A new dominance rule to minimize total
weighted tardiness with unequal release dates. European Journal of
Operational Research, 135(2):394–412, 2001.

Al-Fawzan, M. A. and Haouari, M. A bi-objective model for robust
resource-constrained project scheduling. International Journal of Pro-
duction Economics, 96(2):175–187, 2005.

Alvarez-Valdes, R. and Tamarit, J. The project scheduling polyhedron:
Dimension, facets and lifting theorems. European Journal of Opera-
tional Research, 67(2):204–220, 1993.

209

Bibliography

Artigues, C., Michelon, P., and Reusser, S. Insertion techniques for static
and dynamic resource-constrained project scheduling. European Jour-
nal of Operational Research, 149(2):249–267, 2003.

Artigues, C., Demassey, S., and Neron, E. Resource-Constrained Project
Scheduling: Models, Algorithms, Extensions and Applications. Wiley,
2008.

Artigues, C., Leus, R., and Talla Nobibon, F. Robust optimization for
resource-constrained project scheduling with uncertain activity dura-
tions. Flexible Services and Manufacturing Journal, 25(1-2):175–205,
2013.

Ashtiani, B., Leus, R., and Aryanezhad, M.-B. New competitive results
for the stochastic resource-constrained project scheduling problem: ex-
ploring the benefits of pre-processing. Journal of Scheduling, 14(2):
157–171, 2011.

Aytug, H., Lawley, M., McKay, K., Mohan, S., and Uzsoy, R. Executing
production schedules in the face of uncertainties: A review and some
future directions. European Journal of Operational Research, 161(1):
86–110, 2005.

Baker, K. Introduction to Sequencing and Scheduling. Wiley, 1974.

Ballest́ın, F. and Leus, R. Resource-constrained project scheduling for
timely project completion with stochastic activity durations. Produc-
tion and Operations Management, 18:459–474, 2009.

Ballest́ın, F. When is it worthwhile to work with the stochastic RCPSP?
Journal of Scheduling, 10(3):153–166, 2007.

Ballest́ın, F. and Trautmann, N. An iterated-local-search heuristic for
the resource-constrained weighted earliness-tardiness project scheduling
problem. International Journal of Production Research, 46(22):6231–
6249, 2008.

Bean, J. C., Birge, J. R., Mittenthal, J., and Noon, C. E. Matchup
scheduling with multiple resources, release dates and disruptions. Op-
erations Research, 39(3):470–483, 1991.

Bein, W., Kamburowski, J., and Stallmann, M. Optimal reduction of
two-terminal directed acyclic graphs. SIAM Journal on Computing, 21
(6):1112–1129, 1992.

210

BIBLIOGRAPHY

Belouadah, H., Posner, M., and Potts, C. Scheduling with release dates on
a single machine to minimize total weighted completion time. Discrete
Applied Mathematics, 36(3):213–231, 1992.

Ben-Tal, A., Goryashko, A., Guslitzer, E., and Nemirovski, A. Adjustable
robust solutions of uncertain linear programs. Mathematical Program-
ming, 99(2):351–376, 2003.

Birge, J. R. and Louveaux, F. Introduction to Stochastic Programming.
Springer, 2011.

Blazewicz, J., Lenstra, J. K., and Rinnooy Kan, A. Scheduling subject
to resource constraints: Classification and complexity. Discrete Applied
Mathematics, 5(1):11–24, 1983.

Briskorn, D., Leung, J., and Pinedo, M. Robust scheduling on a single
machine using time buffers. IIE Transactions, 43(6):383–398, 2011.

Bruni, M. E., Beraldi, P., Guerriero, F., and Pinto, E. A heuristic ap-
proach for resource constrained project scheduling with uncertain ac-
tivity durations. Computers & Operations Research, 38(9):1305–1318,
2011.

Calinescu, G., Fernandes, C., Kaul, H., and Zelikovsky, A. Maximum
series-parallel subgraph. Algorithmica, 63(1-2):137–157, 2012.

Chaari, T., Chaabane, S., Aissani, N., and Trentesaux, D. Scheduling
under uncertainty: Survey and research directions. In Advanced Logis-
tics and Transport (ICALT), 2014 International Conference on, pages
229–234, 2014.

Chapman, C. and Ward, S. Project Risk Management: Processes, Tech-
niques and Insights. John Wiley & Sons, 2007.

Christofides, N., Alvarez-Valdes, R., and Tamarit, J. Project scheduling
with resource constraints: A branch and bound approach. European
Journal of Operational Research, 29:262–273, 1987.

Chtourou, H. and Haouari, M. A two-stage-priority-rule-based algorithm
for robust resource-constrained project scheduling. Computers & In-
dustrial Engineering, 55(1):183–194, 2008.

Cong, J. Computing maximum weighted k-families and k-cofamilies in
partially ordered sets. Technical report, University of California, 1993.

211

Bibliography

Conway, R., Maxwell, W., and Miller, L. Theory of Scheduling. Addison
Wesley, Reading, MA, 1967.

Creemers, S. Minimizing the expected makespan of a project with stochas-
tic activity durations under resource constraints. Journal of Scheduling,
18(3):263–273, 2015.

Creemers, S., Leus, R., and Lambrecht, M. Scheduling markovian PERT
networks to maximize the net present value. Operations Research Let-
ters, 38(1):51–56, 2010.

Davari, M. and Demeulemeester, E. The proactive and reactive resource-
constrained project scheduling problem. Technical Report KBI 1613,
KU Leuven, 2016a.

Davari, M. and Demeulemeester, E. A novel branch-and-bound algorithm
for the chance-constrained rcpsp. Technical Report KBI 1620, KU Leu-
ven, 2016b.

Davari, M. and Demeulemeester, E. The proactive and reactive resource-
constrained project scheduling problem: The crucial role of buffer-based
reactions. Technical report, KU Leuven, 2017.

Davari, M., Demeulemeester, E., Leus, R., and Nobibon, F. T. Exact
algorithms for single-machine scheduling with time windows and prece-
dence constraints. Journal of Scheduling, 19:309–334, 2016.

De Reyck, B. and Leus, R. R&D project scheduling when activities may
fail. IIE transactions, 40(4):367–384, 2008.

Debels, D. and Vanhoucke, M. A decomposition-based genetic algorithm
for the resource-constrained project-scheduling problem. Operations
Research, 55(3):457–469, 2007.

Deblaere, F., Demeulemeester, E., and Herroelen, W. RESCON: Educa-
tional project scheduling software. Computer Applications in Engineer-
ing Education, 19(2):327–336, 2011a.

Deblaere, F., Demeulemeester, E., and Herroelen, W. Reactive scheduling
in the multi-mode RCPSP. Computers & Operations Research, 38(1):
63–74, 2011b.

212

BIBLIOGRAPHY

Deblaere, F., Demeulemeester, E., and Herroelen, W. Proactive policies
for the stochastic resource-constrained project scheduling problem. Eu-
ropean Journal of Operational Research, 214(2):308–316, 2011c.

Demassey, S., Artigues, C., and Michelon, P. Constraint-propagation-
based cutting planes: An application to the resource-constrained proj-
ect scheduling problem. INFORMS Journal on computing, 17(1):52–65,
2005.

Demeulemeester, E. and Herroelen, W. A branch-and-bound procedure
for the multiple resource-constrained project scheduling problem. Man-
agement Science, 38:1803–1818, 1992.

Demeulemeester, E. and Herroelen, W. New benchmark results for the
resource-constrained project scheduling problem. Management Science,
43:1485–1492, 1997.

Demeulemeester, E., Vanhoucke, M., and Herroelen, W. RanGen: A
random network generator for activity-on-the-node networks. Journal
of Scheduling, 6:17–38, 2003.

Demeulemeester, E. and Herroelen, W. Project Scheduling: A Research
Handbook. Kluwer Academic Publisher, 2002.

Demeulemeester, E. and Herroelen, W. Robust project scheduling. Foun-
dations and Trends in Technology, Information and Operations Man-
agement, 3:201–376, 2011.

Duenas, A. and Petrovic, D. An approach to predictive-reactive schedul-
ing of parallel machines subject to disruptions. Annals of Operations
Research, 159(1):65–82, 2008.

Dyer, M. and Wolsey, L. Formulating the single machine sequencing prob-
lem with release dates as a mixed integer program. Discrete Applied
Mathematics, 26(2–3):255–270, 1990.

Fisher, M. The Lagrangian relaxation method for solving integer pro-
gramming problems. Management Science, 27(1):1–18, 1981.

Flyvbjerg, B., Bruzelius, N., and Rothengatter, W. Megaprojects and
Risk: An Anatomy of Ambition. Cambridge University Press, 2003.

213

Bibliography

Fu, N., Lau, H. C., Varakantham, P., and Xiao, F. Robust local search for
solving RCPSP/max with durational uncertainty. Journal of Artificial
Intelligence Research, 43(1):43–86, 2012.

Gabrel, V., Murat, C., and Thiele, A. Recent advances in robust opti-
mization: An overview. European Journal of Operational Research, 235
(3):471 – 483, 2014.

Garey, M. and Johnson, D. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

Goldratt, E. Critical Chain. The North River Press Publishing Corpora-
tion, Great Barrington, 1997.

Golumbic, M. C. CHAPTER 5 - comparability graphs. In Golumbic,
M. C., editor, Algorithmic Graph Theory and Perfect Graphs, pages
105–148. Academic Press, 1980.

Gordon, V., Potapneva, E., and Werner, F. Single machine scheduling
with deadlines, release and due dates. Optimization, 42(3):219–244,
1997.

Graham, R., Lawler, E., Lenstra, J., and Kan, A. R. Optimization and
approximation in deterministic sequencing and scheduling: A survey.
Annals of Discrete Mathematics, 5:287–326, 1979.

Graham, R. L. Bounds on multiprocessing timing anomalies. SIAM Jour-
nal on Applied Mathematics, 17(2):416–429, 1969.

Grötschel, M., Lovász, L., and Schrijver, A. Polynomial algorithms for
perfect graphs. In Berge, C. and Chvátal, V., editors, Topics on Perfect
Graphs, volume 88 of North-Holland Mathematics Studies, pages 325–
356. North-Holland, 1984.

Hariri, A. and Potts, C. An algorithm for single machine sequencing with
release dates to minimize total weighted completion time. Discrete
Applied Mathematics, 5(1):99–109, 1983.

Hartmann, S. and Kolisch, R. Experimental evaluation of state-of-the-
art heuristics for the resource-constrained project scheduling problem.
European Journal of Operational Research, 127:394–407, 2000.

214

BIBLIOGRAPHY

Hartmann, S. and Briskorn, D. A survey of variants and extensions of the
resource-constrained project scheduling problem. European Journal of
Operational Research, 207(1):1–14, 2010.

Held, M. and Karp, R. A dynamic programming approach to sequencing
problems. Journal of the Society for Industrial and Applied Mathemat-
ics, 10(1):196–210, 1962.

Herroelen, W. and Leus, R. On the merits and pitfalls of critical chain
scheduling. Journal of Operations Management, 128(3):221–230, 2001.

Herroelen, W. and Leus, R. Project scheduling under uncertainty: Survey
and research potentials. European Journal of Operational Research, 165:
289–306, 2005.

Herroelen, W., Leus, R., and Demeulemeester, E. Critical chain project
scheduling: Do not oversimplify. Project Management Journal, 33:48–
60, 2002.

Herroelen, W. Project scheduling: Theory and practice. Production and
Operations Management, 14(4):413–432, 2005.

Herroelen, W. Generating robust project baseline schedules. In Tutorials
in operations research. INFORMS, 2007.

Herroelen, W. and Leus, R. The construction of stable project baseline
schedules. European Journal of Operational Research, 156(3):550–565,
2004a.

Herroelen, W. and Leus, R. Robust and reactive project scheduling: A
review and classification of procedures. International Journal of Pro-
duction Research, 42(8):1599–1620, 2004b.

Hillson, D. Addressing risk. PM Network, October 2003.

Hoogeveen, J. and van de Velde, S. Stronger Lagrangian bounds by use
of slack variables: Applications to machine scheduling problems. Math-
ematical Programming, 70:173–190, 1995.

Ibaraki, T. and Nakamura, Y. A dynamic programming method for single
machine scheduling. European Journal of Operational Research, 76(1):
72–82, 1994.

215

Bibliography

Igelmund, G. and Radermacher, F. J. Preselective strategies for the op-
timization of stochastic project networks under resource constraints.
Networks, 13(1):1–28, 1983a.

Igelmund, G. and Radermacher, F. J. Algorithmic approaches to prese-
lective strategies for stochastic scheduling problems. Networks, 13(1):
29–48, 1983b.

Jouglet, A., Baptiste, P., and Carlier, J. Handbook of Scheduling: Al-
gorithms, Models and Performance Analysis, chapter 13, Branch and
Bound Algorithms for Total Weighted Tardiness. CRC Press, Boca
Raton, FL, USA, 2004.

Kaerkes, R. Netzplan theory. Methods of Operations Research, 27:1–65,
1977.

Kaerkes, R. and Leipholz, B. Generalized network functions in flow net-
works. Methods of Operations Research, 27:441–465, 1977.

Kaplan, L. A. Resource-constrained project scheduling with preemption of
jobs. University of Michigan, 1988.

Keha, A., Khowala, K., and Fowler, J. Mixed integer programming formu-
lations for single machine scheduling problems. Computers & Industrial
Engineering, 56:357–367, 2009.

Kéri, A. and Kis, T. Primal-dual combined with constraint propagation
for solving RCPSPWET. In Operations Research Proceedings 2005,
pages 685–690. Springer, 2006.

Khemakhem, M. A. and Chtourou, H. Efficient robustness measures
for the resource-constrained project scheduling problem. International
Journal of Industrial and Systems Engineering, 14(2):245–267, 2013.

Kinable, J., Wauters, T., and Berghe, G. V. The concrete delivery prob-
lem. Computers & Operations Research, 48:53–68, 2014.

Klastorin, T. and Mitchell, G. Optimal project planning under the threat
of a disruptive event. IIE Transactions, 45(1):68–80, 2013.

Klein, R. Scheduling of Resource Constrained Projects. Kluwer Academic
Publisher, 2000.

216

BIBLIOGRAPHY

Klimek, M. and Lebkowski, P. Robust buffer allocation for scheduling of a
project with predefined milestones. Decision Making in Manufacturing
and Services, 3(2):49, 2009.

Kolisch, R. and Hartmann, S. Experimental investigation of heuristics for
resource-constrained project scheduling: An update. European Journal
of Operational Research, 174(1):23–37, 2006.

Kolisch, R. and Sprecher, A. PSPLIB - a project scheduling problem
library. European Journal of Operational Research, 96(1):205–216, 1997.

Koné, O., Artigues, C., Lopez, P., and Mongeau, M. Event-based MILP
models for resource-constrained project scheduling problems. Comput-
ers & Operations Research, 38(1):3 – 13, 2011.

Küçükyavuz, S. On mixing sets arising in chance-constrained program-
ming. Mathematical Programming, 132(1):31–56, 2012.

Kuster, J., Jannach, D., and Friedrich, G. Extending the RCPSP for
modeling and solving disruption management problems. Applied Intel-
ligence, 31(3):234–253, 2009.

Kuster, J., Jannach, D., and Friedrich, G. Applying local rescheduling in
response to schedule disruptions. Annals of Operations Research, 180
(1):265–282, 2010.

Lamas, P. and Demeulemeester, E. A purely proactive scheduling pro-
cedure for the resource-constrained project scheduling problem with
stochastic activity durations. Journal of Scheduling, 19:409–428, 2016.

Lambrechts, O., Demeulemeester, E., and Herroelen, W. Exact and sub-
optimal reactive strategies for resource-constrained project scheduling
with uncertain resource availabilities. Technical report, 2007.

Lambrechts, O., Demeulemeester, E., and Herroelen, W. Proactive and
reactive strategies for resource-constrained project scheduling with un-
certain resource availabilities. Journal of Scheduling, 11(2):121–136,
2008a.

Lambrechts, O., Demeulemeester, E., and Herroelen, W. A tabu search
procedure for developing robust predictive project schedules. Interna-
tional Journal of Production Economics, 111(2):493–508, 2008b.

217

Bibliography

Lambrechts, O., Demeulemeester, E., and Herroelen, W. Time slack-based
techniques for robust project scheduling subject to resource uncertainty.
Annals of Operations Research, 186(1):443–464, 2011.

Lawler, E. Optimal sequencing of a single machine subject to precedence
constraints. Management Science, 19(5):544–546, 1973.

Lawler, E. A “pseudopolynomial” algorithm for sequencing jobs to mini-
mize total tardiness. Annals of Discrete Mathematics, 1:331–342, 1977.

Lawler, E. Sequencing jobs to minimize total weighted completion time
subject to precedence constraints. Algorithmic Aspects of Combina-
torics, 2:75–90, 1978.

Lenstra, J., Kan, A. R., and Brucker, P. Complexity of machine scheduling
problems. In Studies in Integer Programming, volume 1 of Annals of
Discrete Mathematics, pages 343–362. Elsevier, 1977.

Leus, R. The generation of stable project plans. PhD thesis, Department
of applied economics, Katholieke Universiteit Leuven, Belgium, 2003.

Leus, R. and Herroelen, W. Stability and resource allocation in project
planning. IIE Transactions, 36(7):1–16, 2004.

Leus, R. and Herroelen, W. The complexity of machine scheduling for
stability with a single disrupted job. Operations Research Letters, 33:
151–156, 2005.

Leus, R. Resource allocation by means of project networks: Complexity
results. Networks, 58(1):59–67, 2011a.

Leus, R. Resource allocation by means of project networks: Dominance
results. Networks, 58(1):50–58, 2011b.

Liebchen, C., Lübbecke, M., Möhring, R., and Stiller, S. Robust and
Online Large-Scale Optimization: Models and Techniques for Trans-
portation Systems, chapter The Concept of Recoverable Robustness,
Linear Programming Recovery, and Railway Applications, pages 1–27.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

Lock, D. Project Management. Gower, Nineth edition, 2007.

Luedtke, J. and Ahmed, S. A sample approximation approach for opti-
mization with probabilistic constraints. SIAM Journal on Optimization,
19(2):674–699, 2008.

218

BIBLIOGRAPHY

Luedtke, J., Ahmed, S., and Nemhauser, G. L. An integer programming
approach for linear programs with probabilistic constraints. Mathemat-
ical Programming, 122(2):247–272, 2010.

McMahon, G. and Lim, C. The two-machine flow shop problem with arbi-
trary precedence relations. European Journal of Operational Research,
64(2):249–257, 1993.

Mehta, S. V. Predictable scheduling of a single machine subject to break-
downs. International Journal of Computer Integrated Manufacturing,
12(1):15–38, 1999.

Mehta, S. and Uzsoy, R. Predictive scheduling of a job shop subject
to breakdowns. IEEE Transactions on Robotics and Automation, 14:
365–378, 1998.

Mingozzi, A., Maniezzo, V., Ricciardelli, S., and Bianco, L. An exact algo-
rithm for the resource-constrained project scheduling problem based on
a new mathematical formulation. Management Science, 44(5):714–729,
1998.

Möhring, R., Radermacher, F., and Weiss, G. Stochastic scheduling prob-
lems I - Set strategies. Mathematical Methods of Operations Research,
28:193–260, 1984.

Möhring, R., Radermacher, F., and Weiss, G. Stochastic scheduling prob-
lems II - General strategies. Mathematical Methods of Operations Re-
search, 29:65–104, 1985a.

Möhring, R., Schulz, A., Stork, F., and Uetz, M. Solving project schedul-
ing problems by minimum cut computations. Mathematical Methods of
Operations Research, 29:65–104, 2000.

Möhring, R., Radermacher, F., and Weiss, G. Stochastic scheduling prob-
lems II - set strategies. Mathematical Methods of Operations Research,
29(3):65–104, 1985b.

Nemeth, G., Lovrek, I., and Sinkovic, V. Scheduling problems in parallel
systems for telecommunications. Computing, 58:199–223, 1997.

Nessah, R. and Kacem, I. Branch-and-bound method for minimizing the
weighted completion time scheduling problem on a single machine with
release dates. Computers & Operations Research, 39(3):471–478, 2012.

219

Bibliography

Neumann, K., Schwindt, C., and Zimmermann, J. Project scheduling with
time windows and scarce resources. Springer, 2003.

Pan, Y. An improved branch and bound algorithm for single machine
scheduling with deadlines to minimize total weighted completion time.
Operations Research Letters, 31(6):492–496, 2003.

Pan, Y. and Shi, L. Dual constrained single machine sequencing to mini-
mize total weighted completion time. IEEE Transactions on Automa-
tion Science and Engineering, 2(4):344–357, 2005.

Pinedo, M. Scheduling: Theory, Algorithms, and Systems. Springer, 2008.

Pinto, J. K. and Prescott, J. E. Planning and tactical factors in the
project implementation process. Journal of Management Studies, 27
(3):305–327, 1990.

Posner, M. Minimizing weighted completion times with deadlines. Oper-
ations Research, 33:562–574, 1985.

Potts, C. A lagrangean based branch and bound algorithm for sin-
gle machine sequencing with precedence constraints to minimize to-
tal weighted completion time. Management Science, 31(10):1300–1311,
1985.

Potts, C. and Van Wassenhove, L. An algorithm for single machine se-
quencing with deadlines to minimize total weighted completion time.
European Journal of Operational Research, 12(4):379–387, 1983.

Potts, C. and Van Wassenhove, L. A branch and bound algorithm for the
total weighted tardiness problem. Operations Research, 33(2):363–377,
1985.

Prékopa, A. Dual method for the solution of a one-stage stochastic pro-
gramming problem with random rhs obeying a discrete probability dis-
tribution. Mathematical Methods of Operations Research, 34(6):441–
461, 1990.

Pritsker, A., Watters, L., and Wolfe, P. Multiproject scheduling with
limited resources: A zero-one programming approach. Management
Science, 16(1):93–108, 1969.

220

BIBLIOGRAPHY

Radermacher, F. Cost-dependent essential systems of es-strategies for
stochastic scheduling problems. Methods of Operations Research, 42:
17–31, 1981.

Radermacher, F. Kapazitätsoptimierung in Netzplänen. Mathematical
systems in economics. Oelgeschlager, Gunn & Hain, Cambridge (MA),
1978.

Rostami, S., Creemers, S., and Leus, R. New benchmark results for the
stochastic resource-constrained project scheduling problem. Journal of
Scheduling, to appear, 2017.

Ruszczyński, A. Probabilistic programming with discrete distributions
and precedence constrained knapsack polyhedra. Mathematical Pro-
gramming, 93(2):195–215, 2002.

Sabuncuoglu, I. and Goren, S. Hedging production schedules against
uncertainty in manufacturing environment with a review of robustness
and stability research. International Journal of Computer Integrated
Manufacturing, 22(2):138–157, 2009.

Schwindt, C. Resource Allocation in Project Management. Springer, 2005.

Schwindt, C. and Zimmermann, J., editors. Handbook on Project Manage-
ment and Scheduling Vol. 1. International Handbooks on Information
Systems. Springer International Publishing, 2015a.

Schwindt, C. and Zimmermann, J., editors. Handbook on Project Manage-
ment and Scheduling Vol. 2. International Handbooks on Information
Systems. Springer International Publishing, 2015b.

Shapiro, A. A dynamic programming approach to adjustable robust op-
timization. Operations Research Letters, 39(2):83 – 87, 2011.

Shirazi, B., Kavi, K., and Hurson, A., editors. Scheduling and Load Bal-
ancing in Parallel and Distributed Systems. IEEE Computer Society
Press, 1995.

Sprecher, A. Scheduling resource-constrained projects competitively at
modest resource requirements. Management Science, 46:710–723, 2000.

Stork, F. Stochastic resource-constrained project scheduling. PhD the-
sis, Technical University of Berlin, School of Mathematics and Natural
Sciences, 2001.

221

Bibliography

Stork, F. Branch-and-bound algorithms for stochastic resource-
constrained project scheduling. Technical report, 2000.

Sule, D. Production Planning and Industrial Scheduling: Examples, Case
Studies and Applications. CRC Press, 2007.

Tahooneh, A. and Ziarati, K. Using artificial bee colony to solve stochastic
resource constrained project scheduling problem. In Advances in Swarm
Intelligence, pages 293–302. Springer, 2011.

Talla Nobibon, F. and Leus, R. Exact algorithms for a generalization
of the order acceptance and scheduling problem in a single-machine
environment. Computers & Operations Research, 38(1):367–378, 2011.

Tanaka, S. and Fujikuma, S. A dynamic-programming-based exact al-
gorithm for general single-machine scheduling with machine idle time.
Journal of Scheduling, 15:347–361, 2012.

Tanaka, S. and Sato, S. An exact algorithm for the precedence-constrained
single-machine scheduling problem. European Journal of Operational
Research, 229(2):345–352, 2013.

Tanaka, S., Fujikuma, S., and Araki, M. An exact algorithm for single-
machine scheduling without machine idle time. Journal of Scheduling,
12:575–593, 2009.

Tang, L., Xuan, H., and Liu, J. Hybrid backward and forward dynamic
programming based Lagrangian relaxation for single machine schedul-
ing. Computers & Operations Research, 34(9):2625–2636, 2007.

Valdes, J., Tarjan, R., and Lawler, E. The recognition of series parallel
digraphs. SIAM Journal on Computing, 11(2):298–313, 1982.

van de Velde, S. Dual decomposition of a single-machine scheduling prob-
lem. Mathematical Programming, 69(1-3):413–428, 1995.

Van de Vonder, S. Proactive-reactive procedures for robust project schedul-
ing. PhD thesis, Department of Decision Sciences and Information Man-
agement (KBI), K.U. Leuven, 2006.

Van de Vonder, S., Demeulemeester, E., Herroelen, W., and Leus, R. The
use of buffers in project management: The trade-off between stability
and makespan. International Journal of Production Economics, 97:
227–240, 2005.

222

BIBLIOGRAPHY

Van de Vonder, S., Demeulemeester, E., Leus, R., and Herroelen, W.
Proactive/reactive project scheduling - Trade-offs and procedures, pages
25–51. 2006. in Jozefowska J, Weglarz J, ed.: Perspectives in Modern
Project Scheduling, (2).

Van de Vonder, S., Ballest́ın, F., Demeulemeester, E., and Herroelen,
W. Heuristic procedures for reactive project scheduling. Computers &
Industrial Engineering, 52(1):11–28, 2007a.

Van de Vonder, S., Demeulemeester, E., and Herroelen, W. A classifi-
cation of predictive-reactive project scheduling procedures. Journal of
Scheduling, 10(3):195–207, 2007b.

Van de Vonder, S., Demeulemeester, E., and Herroelen, W. Proactive
heuristic procedures for robust project scheduling: An experimental
analysis. European Journal of Operational Research, 189(3):723–733,
2008.

Van den Akker, J., Diepen, G., and Hoogeveen, J. Minimizing total
weighted tardiness on a single machine with release dates and equal-
length jobs. Journal of Scheduling, 13:561–576, 2010.

Vanhoucke, M., Demeulemeester, E., and Herroelen, W. An exact pro-
cedure for the resource-constrained weighted earliness-tardiness project
scheduling problem. Annals of Operations Research, 102:179–196, 2001.

Xu, J. and Parnas, D. Scheduling processes with release times, deadlines,
precedence and exclusion relations. IEEE Transaction on Software En-
gineering, 16(3):360–369, 1990.

Zheng, Z., Shumin, L., Ze, G., and Yueni, Z. Resource-constrained multi-
project scheduling with priorities and uncertain activity durations. In-
ternational Journal of Computational Intelligence Systems, 6(3):530–
547, 2013.

Zhu, G., Bard, J., and Yu, G. Disruption management for resource-
constrained project scheduling. Journal of the Operational Research
Society, 56:365–381, 2005.

Zhu, G., Bard, J. F., and Yu, G. A two-stage stochastic programming ap-
proach for project planning with uncertain activity durations. Journal
of Scheduling, 10(3):167–180, 2007.

223

Doctoral Dissertations from the Faculty of
Business and Economics

A list of doctoral dissertations from the Faculty of Business and Economics
can be found at the following website:
http://www.econ.kuleuven.be/phd/doclijst.htm.

225

	Doctoral Committee
	Acknowledgments
	Abstract
	Table of contents
	I Complex project scheduling problems
	Introduction and literature review
	The deterministic RCPSP
	RCPSP under uncertainty
	Dynamic project scheduling
	Proactive/reactive project scheduling

	Proactive scheduling
	Uncertainty in activity durations
	Uncertainty in resource availability

	Reactive scheduling
	Reactive RCPSP with activity duration uncertainty
	Reactive RCPSP with resource uncertainty
	Other notable reactive approaches in project scheduling

	The proactive and reactive resource-constrained project scheduling problem
	Definition and problem statement
	Solution representation
	Conceptual formulation
	Example project

	Solution methodology
	Model 1
	Model 2
	Model 3
	Model 4

	Computational results
	Instance generation
	Measures of stability and robustness
	Results for our proposed models
	Comparison with a conventional proactive and reactive method

	Discussion
	Non-conflict-based PR-policies
	A possible tight lower bound

	Summary and future research

	The proactive and reactive resource-constrained project scheduling problem: The crucial role of buffer-based reactions
	Two important classes of reactions
	Sufficient selection
	Selection-based reactions
	Buffer-based reactions
	An implicit enumeration algorithm
	Computational results
	Discussion

	The selection of schedules
	A schedule refinement technique
	An alternative initial pool generation scheme
	The computational performance
	The choice of parameters

	Summary and conclusion

	A novel branch and bound algorithm for the chance-constrained resource-constrained project scheduling problem
	Problem description
	A realization-based reformulation
	A sample average approximation

	A mathematical formulation
	A stronger formulation
	An example

	Branch-and-bound
	Constructing the tree
	Improvements by hashing and listing

	Computational results
	Instance generation
	Overall results
	Detailed results
	Comparison with other methods

	Discussion: general CCP problem
	Summary and conclusion

	II A generic single machine scheduling problem
	Introducing GSMSP: a single-machine scheduling problem with time windows and precedence constraints
	Literature review
	Problem description
	Mathematical formulations
	Assignment formulation
	Time-indexed formulation

	Instance generation
	Computational results
	Summary and conclusion

	Lower bounds for GSMSP
	Another conceptual formulation
	A trivial lower bound
	Lagrangian-relaxation-based bounds
	Retrieving precedence constraints
	Multiplier adjustment
	Finding a VSP graph
	Improvement by slack variables
	Other Lagrangian bounds

	The quality of the lower bounds
	Summary and conclusion

	A branch and bound algorithm for GSMSP
	Branching strategies
	Branching strategy 1
	Branching strategy 2

	Dominance properties
	General dominance rules
	Dominance rule based on two-job interchange
	Dominance rule based on job insertion
	Dominance rules on scheduled jobs

	Initial upper bound
	Computational results
	Dominance rules
	Branch-and-bound algorithms
	Experiments for subproblems of P

	Summary and conclusion

	List of Figures
	List of Tables
	Bibliography
	Doctoral Dissertations from the Faculty of Business and Economics

